找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logistic Regression with Missing Values in the Covariates; Werner Vach Book 1994 Springer-Verlag New York, Inc. 1994 Conditional probabili

[復(fù)制鏈接]
樓主: 方言
31#
發(fā)表于 2025-3-26 23:56:21 | 只看該作者
32#
發(fā)表于 2025-3-27 04:24:20 | 只看該作者
Generalizations for More Than two Covariates mention that the robustness against violations of the MAR assumption remains valid of course, too. Thus we restrict our attention in this chapter to ML Estimation, Semiparametric ML Estimation, and Estimation of the Score Function.
33#
發(fā)表于 2025-3-27 05:29:45 | 只看該作者
34#
發(fā)表于 2025-3-27 13:26:18 | 只看該作者
35#
發(fā)表于 2025-3-27 14:18:35 | 只看該作者
36#
發(fā)表于 2025-3-27 18:30:40 | 只看該作者
37#
發(fā)表于 2025-3-28 00:52:58 | 只看該作者
The Complete Data CaseLet be . a binary outcome variable, . a covariate with categories 1,…, . and . a covariate with categories 1,…, .. In a logistic model we assume . with parameter restrictions β. . 0 and β. . 0. Λ(.):= 1/(1 + .) denotes the logistic function. We consider the covariates as random variables, and parametrize their joint distribution by ..
38#
發(fā)表于 2025-3-28 05:15:57 | 只看該作者
39#
發(fā)表于 2025-3-28 06:17:15 | 只看該作者
Quantitative Comparisons: Results of Finite Sample Size Simulation StudiesThe investigations of the last chapter were based on asymptotic arguments. It remains to show that the results of the comparisons are transferable to the finite sample size. Moreover, the properties of the methods themselves have been examined so far only asymptotically, and the estimation of variance is also based on asymptotic results.
40#
發(fā)表于 2025-3-28 12:10:48 | 只看該作者
https://doi.org/10.1007/978-1-4612-2650-5Conditional probability; Finite; Likelihood; Logistic Regression; Variance; expectation–maximization algo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑河市| 北川| 平昌县| 麻城市| 应用必备| 沅江市| 苍溪县| 分宜县| 米易县| 青河县| 嘉峪关市| 麦盖提县| 荣成市| 阳高县| 凭祥市| 平果县| 磐安县| 区。| 宁阳县| 从江县| 赤城县| 山丹县| 新乡市| 温宿县| 昌图县| 新野县| 天全县| 乌兰浩特市| 陆丰市| 沙雅县| 托克逊县| 沛县| 汝阳县| 秭归县| 会昌县| 沾化县| 汉中市| 桐庐县| 仲巴县| 广南县| 崇左市|