找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logistic Regression; A Self-Learning Text David G. Kleinbaum Textbook 19941st edition Springer Science+Business Media New York 1994 class.d

[復(fù)制鏈接]
樓主: Wilson
21#
發(fā)表于 2025-3-25 04:23:07 | 只看該作者
22#
發(fā)表于 2025-3-25 11:15:18 | 只看該作者
Important Special Cases of the Logistic Model,ding odds ratio expressions. In particular, focus is on defining the independent variables that go into the model and on computing the odds ratio for each special case. Models that account for the potential confounding effects and potential interaction effects of covariates are emphasized.
23#
發(fā)表于 2025-3-25 15:09:52 | 只看該作者
Maximum Likelihood Techniques: An Overview, We also distinguish between two alternative ML methods, called the unconditional and the conditional approaches, and we give guidelines regarding how the applied user can choose between these methods. Finally, we provide a brief overview of how to make statistical inferences using ML estimates.
24#
發(fā)表于 2025-3-25 18:03:59 | 只看該作者
25#
發(fā)表于 2025-3-25 21:04:00 | 只看該作者
26#
發(fā)表于 2025-3-26 00:07:57 | 只看該作者
Analysis of Matched Data Using Logistic Regression,stratification to carry out a matched analysis. Our primary focus is on case-control studies. We then introduce the logistic model for matched data and describe the corresponding odds ratio formula. Finally, we illustrate the analysis of matched data using logistic regression with an application tha
27#
發(fā)表于 2025-3-26 06:05:35 | 只看該作者
28#
發(fā)表于 2025-3-26 09:50:06 | 只看該作者
Computing the Odds Ratio in Logistic Regression,In this chapter, the .. is extended to consider other coding schemes for a single exposure variable, including ordinal and interval exposures. The model is further extended to allow for several exposure variables. The formula for the odds ratio is provided for each extension, and examples are used to illustrate the formula.
29#
發(fā)表于 2025-3-26 13:32:31 | 只看該作者
30#
發(fā)表于 2025-3-26 16:52:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜阳市| 泊头市| 通辽市| 南投县| 含山县| 青龙| 册亨县| 大宁县| 三门峡市| 深泽县| 杭州市| 浦北县| 镇坪县| 托克逊县| 故城县| 丰镇市| 翁牛特旗| 龙井市| 安吉县| 德清县| 凉山| 五寨县| 南开区| 福贡县| 永兴县| 滨州市| 二连浩特市| 珲春市| 班玛县| 上杭县| 太保市| 临澧县| 五常市| 盈江县| 云阳县| 和硕县| 新余市| 隆昌县| 房山区| 西乌珠穆沁旗| 紫金县|