找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logistic Regression; A Self-Learning Text David G. Kleinbaum Textbook 19941st edition Springer Science+Business Media New York 1994 class.d

[復(fù)制鏈接]
樓主: Wilson
21#
發(fā)表于 2025-3-25 04:23:07 | 只看該作者
22#
發(fā)表于 2025-3-25 11:15:18 | 只看該作者
Important Special Cases of the Logistic Model,ding odds ratio expressions. In particular, focus is on defining the independent variables that go into the model and on computing the odds ratio for each special case. Models that account for the potential confounding effects and potential interaction effects of covariates are emphasized.
23#
發(fā)表于 2025-3-25 15:09:52 | 只看該作者
Maximum Likelihood Techniques: An Overview, We also distinguish between two alternative ML methods, called the unconditional and the conditional approaches, and we give guidelines regarding how the applied user can choose between these methods. Finally, we provide a brief overview of how to make statistical inferences using ML estimates.
24#
發(fā)表于 2025-3-25 18:03:59 | 只看該作者
25#
發(fā)表于 2025-3-25 21:04:00 | 只看該作者
26#
發(fā)表于 2025-3-26 00:07:57 | 只看該作者
Analysis of Matched Data Using Logistic Regression,stratification to carry out a matched analysis. Our primary focus is on case-control studies. We then introduce the logistic model for matched data and describe the corresponding odds ratio formula. Finally, we illustrate the analysis of matched data using logistic regression with an application tha
27#
發(fā)表于 2025-3-26 06:05:35 | 只看該作者
28#
發(fā)表于 2025-3-26 09:50:06 | 只看該作者
Computing the Odds Ratio in Logistic Regression,In this chapter, the .. is extended to consider other coding schemes for a single exposure variable, including ordinal and interval exposures. The model is further extended to allow for several exposure variables. The formula for the odds ratio is provided for each extension, and examples are used to illustrate the formula.
29#
發(fā)表于 2025-3-26 13:32:31 | 只看該作者
30#
發(fā)表于 2025-3-26 16:52:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉节县| 泰兴市| 桑植县| 宣汉县| 河南省| 台江县| 旬阳县| 中西区| 郯城县| 石首市| 长顺县| 苍溪县| 刚察县| 合川市| 海门市| 高清| 靖远县| 根河市| 肃宁县| 鹤庆县| 宜春市| 台中市| 嘉鱼县| 南城县| 西乡县| 分宜县| 页游| 平阳县| 石阡县| 锡林浩特市| 共和县| 邯郸县| 祁门县| 南宁市| 泸西县| 喀什市| 浑源县| 黄陵县| 建昌县| 汾西县| 门头沟区|