找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logics in Artificial Intelligence; European Conference, Sergio Flesca,Sergio Greco,Nicola Leone Conference proceedings 2002 Springer-Verlag

[復制鏈接]
樓主: 機會
31#
發(fā)表于 2025-3-27 00:37:17 | 只看該作者
Answer Set Planning under Action Costs As shown, this novel language allows for expressing some nontrivial planning tasks in an elegant way. Furthermore, it flexibly allows for representing planning problems under other optimality criteria as well, such as computing “fastest” plans (with the least number of steps), and refinement combin
32#
發(fā)表于 2025-3-27 04:18:56 | 只看該作者
33#
發(fā)表于 2025-3-27 05:48:16 | 只看該作者
Second-Order Quantifier Elimination in Modal Contextsce theory, relational databases, deductive and knowledge databases, knowledge representation, commonsense reasoning and approximate reasoning..In the current paper we generalize the result of [.] by allowing modal operators. This allows us to provide a unifying framework for many applications, that
34#
發(fā)表于 2025-3-27 11:21:10 | 只看該作者
https://doi.org/10.1007/3-540-45757-7Artificial intelligence; agents; complexity; evolution; intelligence; logic; multi-agent system; optimizati
35#
發(fā)表于 2025-3-27 15:13:38 | 只看該作者
Sergio Flesca,Sergio Greco,Nicola LeoneIncludes supplementary material:
36#
發(fā)表于 2025-3-27 20:30:22 | 只看該作者
37#
發(fā)表于 2025-3-28 00:40:56 | 只看該作者
38#
發(fā)表于 2025-3-28 03:59:58 | 只看該作者
39#
發(fā)表于 2025-3-28 09:20:03 | 只看該作者
A Modal Formulation of McCain and Turner’s Theory of Causal ReasoningMcCain and Turner [.] have an interesting theory of causal reasoning. We give a modal treatment of McCain and Turner’s theory of causal reasoning: we thereby formulate theories equivalent to their original model-theoretic treatment, while preserving its good properties (in particular, its independence of vocabulary).
40#
發(fā)表于 2025-3-28 12:52:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
利辛县| 平定县| 嘉鱼县| 永和县| 长岛县| 闻喜县| 图木舒克市| 沂水县| 临夏市| 南和县| 扶余县| 青田县| 阿尔山市| 南涧| 西畴县| 南华县| 弥勒县| 新干县| 依兰县| 青海省| 合川市| 杨浦区| 英超| 临朐县| 措美县| 平阳县| 临洮县| 多伦县| 临海市| 古浪县| 社旗县| 西安市| 孟连| 宝坻区| 尉氏县| 通山县| 荣成市| 临沂市| 白城市| 米泉市| 丹凤县|