找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logics in Artificial Intelligence; European Conference, Sergio Flesca,Sergio Greco,Nicola Leone Conference proceedings 2002 Springer-Verlag

[復制鏈接]
樓主: 機會
31#
發(fā)表于 2025-3-27 00:37:17 | 只看該作者
Answer Set Planning under Action Costs As shown, this novel language allows for expressing some nontrivial planning tasks in an elegant way. Furthermore, it flexibly allows for representing planning problems under other optimality criteria as well, such as computing “fastest” plans (with the least number of steps), and refinement combin
32#
發(fā)表于 2025-3-27 04:18:56 | 只看該作者
33#
發(fā)表于 2025-3-27 05:48:16 | 只看該作者
Second-Order Quantifier Elimination in Modal Contextsce theory, relational databases, deductive and knowledge databases, knowledge representation, commonsense reasoning and approximate reasoning..In the current paper we generalize the result of [.] by allowing modal operators. This allows us to provide a unifying framework for many applications, that
34#
發(fā)表于 2025-3-27 11:21:10 | 只看該作者
https://doi.org/10.1007/3-540-45757-7Artificial intelligence; agents; complexity; evolution; intelligence; logic; multi-agent system; optimizati
35#
發(fā)表于 2025-3-27 15:13:38 | 只看該作者
Sergio Flesca,Sergio Greco,Nicola LeoneIncludes supplementary material:
36#
發(fā)表于 2025-3-27 20:30:22 | 只看該作者
37#
發(fā)表于 2025-3-28 00:40:56 | 只看該作者
38#
發(fā)表于 2025-3-28 03:59:58 | 只看該作者
39#
發(fā)表于 2025-3-28 09:20:03 | 只看該作者
A Modal Formulation of McCain and Turner’s Theory of Causal ReasoningMcCain and Turner [.] have an interesting theory of causal reasoning. We give a modal treatment of McCain and Turner’s theory of causal reasoning: we thereby formulate theories equivalent to their original model-theoretic treatment, while preserving its good properties (in particular, its independence of vocabulary).
40#
發(fā)表于 2025-3-28 12:52:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
通城县| 婺源县| 伊宁市| 徐汇区| 青州市| 甘南县| 玉溪市| 石嘴山市| 静宁县| 滕州市| 丹江口市| 迭部县| 通河县| 名山县| 星座| 乐亭县| 涟源市| 九台市| 遵义县| 溧阳市| 临邑县| 九寨沟县| 四子王旗| 琼结县| 阿克苏市| 建湖县| 勃利县| 宁国市| 遂溪县| 师宗县| 泽库县| 丰宁| 合阳县| 高碑店市| 开原市| 阿拉善左旗| 肃宁县| 海城市| 偏关县| 新和县| 乌苏市|