找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logicism, Intuitionism, and Formalism; What Has Become of T Sten Lindstr?m,Erik Palmgren,Viggo Stoltenberg-Han Book 2009 Springer Science+B

[復制鏈接]
樓主: Taylor
21#
發(fā)表于 2025-3-25 03:47:06 | 只看該作者
Brouwer’s Approximate Fixed-Point Theorem is Equivalent to Brouwer’s Fan TheoremIn a weak system for intuitionistic analysis, one may prove, using the Fan Theorem as an additional axiom, that, for every continuous function ? from the unit square U to itself, for every positive rational e, there exists x in U such that |?(x) ? x| < e. Conversely, if this statement is taken as an additional axiom, the Fan Theorem follows.
22#
發(fā)表于 2025-3-25 07:38:19 | 只看該作者
23#
發(fā)表于 2025-3-25 14:27:59 | 只看該作者
24#
發(fā)表于 2025-3-25 18:12:13 | 只看該作者
25#
發(fā)表于 2025-3-25 23:11:44 | 只看該作者
Book 2009ber formal unentscheidbare S?tze der Principia Mathematica und verwandter Systeme I. can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert‘s formalist and pr
26#
發(fā)表于 2025-3-26 02:56:40 | 只看該作者
27#
發(fā)表于 2025-3-26 08:14:22 | 只看該作者
0166-6991 s of mathematics in a historical perspective.Analyses the cl.The period in the foundations of mathematics that started in 1879 with the publication of Frege‘s .Begriffsschrift .and ended in 1931 with G?del‘s .über formal unentscheidbare S?tze der Principia Mathematica und verwandter Systeme I. can r
28#
發(fā)表于 2025-3-26 12:09:07 | 只看該作者
29#
發(fā)表于 2025-3-26 15:16:48 | 只看該作者
30#
發(fā)表于 2025-3-26 17:37:27 | 只看該作者
Protocol Sentences for Lite Logicismtheoretical structure of the science goes far beyond the data. After this view is introduced and compared and contrasted with others, the question just what form the “protocol sentences” or reports of data are to take is examined.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
封开县| 江永县| 融水| 舟曲县| 盐津县| 阳江市| 汉寿县| 邛崃市| 芦溪县| 建湖县| 久治县| 永兴县| 阿巴嘎旗| 武夷山市| 尚义县| 康定县| 大洼县| 拉萨市| 商城县| 城市| 桂阳县| 千阳县| 图们市| 固原市| 彩票| 隆化县| 洛阳市| 敦煌市| 阿拉善左旗| 中牟县| 芒康县| 施甸县| 孟连| 临海市| 绍兴县| 乌拉特中旗| 罗定市| 鹤山市| 孟州市| 贺兰县| 沂南县|