找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logicism, Intuitionism, and Formalism; What Has Become of T Sten Lindstr?m,Erik Palmgren,Viggo Stoltenberg-Han Book 2009 Springer Science+B

[復制鏈接]
樓主: Taylor
21#
發(fā)表于 2025-3-25 03:47:06 | 只看該作者
Brouwer’s Approximate Fixed-Point Theorem is Equivalent to Brouwer’s Fan TheoremIn a weak system for intuitionistic analysis, one may prove, using the Fan Theorem as an additional axiom, that, for every continuous function ? from the unit square U to itself, for every positive rational e, there exists x in U such that |?(x) ? x| < e. Conversely, if this statement is taken as an additional axiom, the Fan Theorem follows.
22#
發(fā)表于 2025-3-25 07:38:19 | 只看該作者
23#
發(fā)表于 2025-3-25 14:27:59 | 只看該作者
24#
發(fā)表于 2025-3-25 18:12:13 | 只看該作者
25#
發(fā)表于 2025-3-25 23:11:44 | 只看該作者
Book 2009ber formal unentscheidbare S?tze der Principia Mathematica und verwandter Systeme I. can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert‘s formalist and pr
26#
發(fā)表于 2025-3-26 02:56:40 | 只看該作者
27#
發(fā)表于 2025-3-26 08:14:22 | 只看該作者
0166-6991 s of mathematics in a historical perspective.Analyses the cl.The period in the foundations of mathematics that started in 1879 with the publication of Frege‘s .Begriffsschrift .and ended in 1931 with G?del‘s .über formal unentscheidbare S?tze der Principia Mathematica und verwandter Systeme I. can r
28#
發(fā)表于 2025-3-26 12:09:07 | 只看該作者
29#
發(fā)表于 2025-3-26 15:16:48 | 只看該作者
30#
發(fā)表于 2025-3-26 17:37:27 | 只看該作者
Protocol Sentences for Lite Logicismtheoretical structure of the science goes far beyond the data. After this view is introduced and compared and contrasted with others, the question just what form the “protocol sentences” or reports of data are to take is examined.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
咸丰县| 尤溪县| 新化县| 泰州市| 和顺县| 长子县| 蒙山县| 全椒县| 平原县| 泊头市| 乐昌市| 扬中市| 鱼台县| 望都县| 古丈县| 富顺县| 尉氏县| 岚皋县| 沈丘县| 柞水县| 武川县| 荆州市| 乳山市| 马尔康县| 靖远县| 桃源县| 临夏市| 四子王旗| 连城县| 嘉祥县| 丹阳市| 寿阳县| 奉新县| 星子县| 石城县| 三门县| 铜陵市| 濮阳市| 正阳县| 怀仁县| 商都县|