找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logicism, Intuitionism, and Formalism; What Has Become of T Sten Lindstr?m,Erik Palmgren,Viggo Stoltenberg-Han Book 2009 Springer Science+B

[復(fù)制鏈接]
樓主: Taylor
21#
發(fā)表于 2025-3-25 03:47:06 | 只看該作者
Brouwer’s Approximate Fixed-Point Theorem is Equivalent to Brouwer’s Fan TheoremIn a weak system for intuitionistic analysis, one may prove, using the Fan Theorem as an additional axiom, that, for every continuous function ? from the unit square U to itself, for every positive rational e, there exists x in U such that |?(x) ? x| < e. Conversely, if this statement is taken as an additional axiom, the Fan Theorem follows.
22#
發(fā)表于 2025-3-25 07:38:19 | 只看該作者
23#
發(fā)表于 2025-3-25 14:27:59 | 只看該作者
24#
發(fā)表于 2025-3-25 18:12:13 | 只看該作者
25#
發(fā)表于 2025-3-25 23:11:44 | 只看該作者
Book 2009ber formal unentscheidbare S?tze der Principia Mathematica und verwandter Systeme I. can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert‘s formalist and pr
26#
發(fā)表于 2025-3-26 02:56:40 | 只看該作者
27#
發(fā)表于 2025-3-26 08:14:22 | 只看該作者
0166-6991 s of mathematics in a historical perspective.Analyses the cl.The period in the foundations of mathematics that started in 1879 with the publication of Frege‘s .Begriffsschrift .and ended in 1931 with G?del‘s .über formal unentscheidbare S?tze der Principia Mathematica und verwandter Systeme I. can r
28#
發(fā)表于 2025-3-26 12:09:07 | 只看該作者
29#
發(fā)表于 2025-3-26 15:16:48 | 只看該作者
30#
發(fā)表于 2025-3-26 17:37:27 | 只看該作者
Protocol Sentences for Lite Logicismtheoretical structure of the science goes far beyond the data. After this view is introduced and compared and contrasted with others, the question just what form the “protocol sentences” or reports of data are to take is examined.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陇川县| 桂林市| 都江堰市| 苍梧县| 延津县| 基隆市| 齐齐哈尔市| 法库县| 吉林市| 奉贤区| 华坪县| 莲花县| 合山市| 黑山县| 南溪县| 博乐市| 舒城县| 佛山市| 同心县| 多伦县| 修武县| 岱山县| 韶山市| 辰溪县| 屯昌县| 北宁市| 黄冈市| 湖南省| 岚皋县| 称多县| 鄂尔多斯市| 镇雄县| 大城县| 新营市| 金昌市| 香格里拉县| 郸城县| 临安市| 延寿县| 呼和浩特市| 鲁甸县|