找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logical and Computational Aspects of Model-Based Reasoning; Lorenzo Magnani,Nancy J. Nersessian,Claudio Pizzi Book 2002 Springer Science+B

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 13:29:26 | 只看該作者
12#
發(fā)表于 2025-3-23 17:44:13 | 只看該作者
Ekkehard Finkeissenychology but also for logic and metaphysics. Such a radical empowerment of the role of inner sense, which culminated in Lambert’s work, is the most plausible target of Kant’s criticism. Relegating the contribution of inner sense to the fields of anthropology and empirical psychology was part of Kant
13#
發(fā)表于 2025-3-23 20:42:07 | 只看該作者
borate this aspect, focusing primarily on both the origins and future of humankind and the way they are connected by this specific conception of a vocation. I argue that Kant picks up on the Enlightenment debate on the vocation of the human being and combines it not only with core ideas of the philo
14#
發(fā)表于 2025-3-23 22:16:00 | 只看該作者
15#
發(fā)表于 2025-3-24 02:56:19 | 只看該作者
Logical and Computational Aspects of Model-Based Reasoning
16#
發(fā)表于 2025-3-24 07:06:32 | 只看該作者
17#
發(fā)表于 2025-3-24 13:46:19 | 只看該作者
18#
發(fā)表于 2025-3-24 17:47:18 | 只看該作者
A Logical Analysis of Graphical Consistency Proofs surrogates through physical operations. Our analysis is therefore a clarification of the exact semantic requirements for one representative way in which a visual representation participates in distributed cognition [Giere, 2001] or manipulative inferences [Magnani, 2001].
19#
發(fā)表于 2025-3-24 22:50:23 | 只看該作者
20#
發(fā)表于 2025-3-25 00:00:51 | 只看該作者
Scientific Explanation and Modified Semantic Tableaux 〈θ,?〉 such that θ is .-satisfiable, if there is a δ′-tableau of θ ∪ ?? different from its standard tableau, then there is a solution . for 〈θ,?〉; (iv) given an abduction problem 〈θ,?〉 such that θ is .-satisfiable, if . is a solution and θ ∪ . is consistent, then . ∈ Ab*(〈θ,?〉) and it is an explanat
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北碚区| 贵定县| 驻马店市| 南丰县| 淳安县| 五家渠市| 洱源县| 亳州市| 巫溪县| 莱阳市| 黔西县| 大丰市| 漯河市| 贡山| 定兴县| 墨脱县| 徐州市| 青岛市| 靖西县| 楚雄市| 三都| 伊通| 沿河| 周至县| 宁乡县| 南召县| 郑州市| 闽侯县| 定远县| 彩票| 莆田市| 探索| 类乌齐县| 霸州市| 六盘水市| 广宗县| 东乡族自治县| 任丘市| 阳谷县| 灵石县| 大庆市|