找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic, Rationality,and Interaction; 8th International Wo Sujata Ghosh,Thomas Icard Conference proceedings 2021 Springer Nature Switzerland

[復(fù)制鏈接]
樓主: 并排一起
11#
發(fā)表于 2025-3-23 19:02:13 | 只看該作者
Logic, Rationality,and Interaction978-3-030-88708-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
12#
發(fā)表于 2025-3-23 23:43:13 | 只看該作者
13#
發(fā)表于 2025-3-24 04:43:49 | 只看該作者
Social Bot Detection as a Temporal Logic Model Checking Problem,el from a real-life social network. We show that we can reduce TNL to a fragment of linear temporal logic with past and use this to establish the computational efficiency of model checking for social bot detection.
14#
發(fā)表于 2025-3-24 07:11:02 | 只看該作者
Modelling Accuracy and Trustworthiness of Explaining Agents, and trustworthiness of explaining agents. We also provide a semantics for this logic, based on a multi-agent structure and relative model-checking algorithms. The paper concludes with a simple example of a possible application.
15#
發(fā)表于 2025-3-24 14:09:22 | 只看該作者
Conference proceedings 2021on, LORI 2021, held in Xi`an, China, in October 2021..The 15 full papers presented together with 7 short papers in this book were carefully reviewed and selected from 40 submissions. The workshop covers a wide range on the following topics such as doxastic and epistemic logics, deontic logic, intuit
16#
發(fā)表于 2025-3-24 17:58:03 | 只看該作者
,Discrete Linear Temporal Logic with?Knowing-Value Operator,ent state of knowledge of the agents in the system relevant, but also how that state of knowledge changes over time. So we introduce temporal logic operators ‘next’ and ‘until’ to extend Plaza’s system. The completeness proof is highly non-trivial and we referred to the work of [., .].
17#
發(fā)表于 2025-3-24 19:41:18 | 只看該作者
18#
發(fā)表于 2025-3-25 02:49:27 | 只看該作者
Situated Epistemic Updates,c, and non-monotonic update in substructural dynamic epistemic logic. Our investigation is mainly conceptual, but leads to completeness results using reduction axioms, and lays the groundwork for future investigation into the concept of situated epistemic update.
19#
發(fā)表于 2025-3-25 04:08:56 | 只看該作者
20#
發(fā)表于 2025-3-25 10:55:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 10:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南靖县| 峡江县| 台山市| 洛阳市| 泸定县| 巴东县| 柞水县| 东港市| 五华县| 鸡泽县| 德钦县| 桂林市| 安福县| 东阿县| 西平县| 建昌县| 枝江市| 铜川市| 舞阳县| 东源县| 绿春县| 景德镇市| 永年县| 卓尼县| 宜兰市| 全州县| 白银市| 额敏县| 平乡县| 河北区| 六盘水市| 黔东| 诸城市| 东台市| 长海县| 阳山县| 万源市| 昂仁县| 九寨沟县| 盖州市| 甘南县|