找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic, Rationality, and Interaction; 6th International Wo Alexandru Baltag,Jeremy Seligman,Tomoyuki Yamada Conference proceedings 2017 Spri

[復(fù)制鏈接]
樓主: Localized
21#
發(fā)表于 2025-3-25 06:06:59 | 只看該作者
The Stubborn Non-probabilist—‘Negation Incoherence’ and a New Way to Block the Dutch Book ArgumentWe rigorously specify the class of nonprobabilistic agents which are, we argue, immune to the classical Dutch Book argument. We also discuss the notion of expected value used in the argument as well as sketch future research connecting our results to those concerning incoherence measures.
22#
發(fā)表于 2025-3-25 11:20:10 | 只看該作者
23#
發(fā)表于 2025-3-25 15:00:01 | 只看該作者
Logic, Rationality, and Interaction978-3-662-55665-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
24#
發(fā)表于 2025-3-25 17:50:58 | 只看該作者
An Extended First-Order Belnap-Dunn Logic with Classical Negation this logic and prove theorems for syntactically and semantically embedding FBD+ into a Gentzen-type sequent calculus for first-order classical logic. Moreover, we show the cut-elimination theorem for FBD+ and prove the completeness theorems with respect to both valuation and many-valued semantics for FBD+.
25#
發(fā)表于 2025-3-25 23:47:35 | 只看該作者
Stability in Binary Opinion Diffusionudied via techniques from binary aggregation, which directly relate to neighborhood frames. It then characterizes stabilization in terms of such neighborhood structures, and shows how the monotone .-calculus can express relevant properties of them. Finally, it illustrates the scope of these results by applying them to specific diffusion models.
26#
發(fā)表于 2025-3-26 01:55:20 | 只看該作者
Doing Without Naturephic image of .. This generalizes an earlier result from Van Benthem and Pacuit [.] about finite two-player choice models. It further strengthens the link between STIT logic and game theory, because deterministic choice models correspond in a straightforward way to normal game forms, and choice models are generally used to interpret STIT logic.
27#
發(fā)表于 2025-3-26 06:31:19 | 只看該作者
28#
發(fā)表于 2025-3-26 10:41:36 | 只看該作者
29#
發(fā)表于 2025-3-26 13:21:37 | 只看該作者
30#
發(fā)表于 2025-3-26 20:34:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安国市| 韶关市| 凤凰县| 隆德县| 平武县| 响水县| 玉林市| 新宾| 承德县| 百色市| 恩平市| 万山特区| 革吉县| 汾阳市| 葫芦岛市| 宁德市| 易门县| 金川县| 平泉县| 健康| 岱山县| 赤壁市| 余江县| 漳平市| 余干县| 巴里| 南康市| 聂拉木县| 康保县| 娄烦县| 伊春市| 诸暨市| 宝清县| 乌拉特后旗| 安溪县| 廊坊市| 堆龙德庆县| 丰都县| 祁门县| 奎屯市| 天镇县|