找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic, Rationality, and Interaction; 9th International Wo Natasha Alechina,Andreas Herzig,Fei Liang Conference proceedings 2023 The Editor(

[復(fù)制鏈接]
樓主: 中間時期
11#
發(fā)表于 2025-3-23 11:49:17 | 只看該作者
,A Temporal Logic for?Successive Events,ear temporal logic with a new modality to capture the case that a sequence of events successively occurs. We compared the expressivity between this extended linear temporal logic and the standard linear temporal logic.
12#
發(fā)表于 2025-3-23 15:11:30 | 只看該作者
,On the?Finite Model Property of?Non-normal Modal Logics,.. We study the algebras corresponding to these logics and give some examples of them. We further introduce the Gentzen-style sequent calculi with soundness and completeness proved. Finally, we prove the FMP of these logics and thus decidability based on our systems by algebraic proof-theoretic methods.
13#
發(fā)表于 2025-3-23 18:13:54 | 只看該作者
14#
發(fā)表于 2025-3-23 22:12:17 | 只看該作者
,Reasons in?Weighted Argumentation Graphs,favor of or against actions—and their interaction. The interaction between normative reasons is usually made sense of by appealing to the metaphor of (normative) weight scales. This paper substitutes an argumentation-theoretic model for this metaphor. The upshot is a general and precise model that is faithful to the philosophical ideas.
15#
發(fā)表于 2025-3-24 02:26:54 | 只看該作者
978-3-031-45557-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
16#
發(fā)表于 2025-3-24 07:21:38 | 只看該作者
17#
發(fā)表于 2025-3-24 14:31:40 | 只看該作者
18#
發(fā)表于 2025-3-24 17:36:51 | 只看該作者
An Inferential Theory of Causal Reasoning,We present a general formalism of causal reasoning that encompasses both Pearl’s approach to causality and a number of key systems of nonmonotonic reasoning in artificial intelligence.
19#
發(fā)表于 2025-3-24 21:31:29 | 只看該作者
,An Arrow-Based Dynamic Logic of?Normative Systems and?Its Decidability,Normative arrow update logic (NAUL) is a logic that combines normative temporal logic (NTL) and arrow update logic (AUL). In NAUL, norms are interpreted as arrow updates on labeled transition systems with a CTL-like logic. We show that the satisfiability problem of NAUL is decidable with a tableau method and it is in EXPSPACE.
20#
發(fā)表于 2025-3-25 03:03:41 | 只看該作者
,Connexivity Meets Church and?Ackermann,Here we study two connexive logics based on one of the conditionals introduced by Church in [.] and on some negations defined through falsity constants in the sense of Ackermann in [.].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰和县| 墨江| 阿拉善盟| 孝义市| 苏尼特左旗| 中卫市| 明光市| 搜索| 神农架林区| 光山县| 丽江市| 庆阳市| 泰兴市| 通城县| 叙永县| 车致| 澎湖县| 方山县| 河南省| 泰兴市| 博兴县| 斗六市| 合作市| 神木县| 井研县| 黎川县| 阿荣旗| 福泉市| 崇仁县| 富平县| 垦利县| 岳普湖县| 岗巴县| 诸城市| 泸定县| 法库县| 林州市| 荔波县| 仲巴县| 瓮安县| 和平县|