找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic, Rationality, and Interaction; 9th International Wo Natasha Alechina,Andreas Herzig,Fei Liang Conference proceedings 2023 The Editor(

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:49:17 | 只看該作者
,A Temporal Logic for?Successive Events,ear temporal logic with a new modality to capture the case that a sequence of events successively occurs. We compared the expressivity between this extended linear temporal logic and the standard linear temporal logic.
12#
發(fā)表于 2025-3-23 15:11:30 | 只看該作者
,On the?Finite Model Property of?Non-normal Modal Logics,.. We study the algebras corresponding to these logics and give some examples of them. We further introduce the Gentzen-style sequent calculi with soundness and completeness proved. Finally, we prove the FMP of these logics and thus decidability based on our systems by algebraic proof-theoretic methods.
13#
發(fā)表于 2025-3-23 18:13:54 | 只看該作者
14#
發(fā)表于 2025-3-23 22:12:17 | 只看該作者
,Reasons in?Weighted Argumentation Graphs,favor of or against actions—and their interaction. The interaction between normative reasons is usually made sense of by appealing to the metaphor of (normative) weight scales. This paper substitutes an argumentation-theoretic model for this metaphor. The upshot is a general and precise model that is faithful to the philosophical ideas.
15#
發(fā)表于 2025-3-24 02:26:54 | 只看該作者
978-3-031-45557-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
16#
發(fā)表于 2025-3-24 07:21:38 | 只看該作者
17#
發(fā)表于 2025-3-24 14:31:40 | 只看該作者
18#
發(fā)表于 2025-3-24 17:36:51 | 只看該作者
An Inferential Theory of Causal Reasoning,We present a general formalism of causal reasoning that encompasses both Pearl’s approach to causality and a number of key systems of nonmonotonic reasoning in artificial intelligence.
19#
發(fā)表于 2025-3-24 21:31:29 | 只看該作者
,An Arrow-Based Dynamic Logic of?Normative Systems and?Its Decidability,Normative arrow update logic (NAUL) is a logic that combines normative temporal logic (NTL) and arrow update logic (AUL). In NAUL, norms are interpreted as arrow updates on labeled transition systems with a CTL-like logic. We show that the satisfiability problem of NAUL is decidable with a tableau method and it is in EXPSPACE.
20#
發(fā)表于 2025-3-25 03:03:41 | 只看該作者
,Connexivity Meets Church and?Ackermann,Here we study two connexive logics based on one of the conditionals introduced by Church in [.] and on some negations defined through falsity constants in the sense of Ackermann in [.].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
保康县| 井陉县| 云安县| 特克斯县| 肇东市| 宣威市| 商都县| 高邮市| 丹寨县| 定安县| 轮台县| 甘孜| 石林| 满洲里市| 仁布县| 建水县| 凤冈县| 海伦市| 博爱县| 呼和浩特市| 银川市| 西和县| 永善县| 平邑县| 蕉岭县| 从化市| 新昌县| 榆树市| 镇沅| 巫溪县| 西畴县| 昌平区| 瑞金市| 广安市| 定兴县| 开封市| 简阳市| 晴隆县| 轮台县| 厦门市| 南丰县|