找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic, Language, Information, and Computation; 27th International W Alexandra Silva,Renata Wassermann,Ruy de Queiroz Conference proceedings

[復制鏈接]
樓主: Lactase
41#
發(fā)表于 2025-3-28 15:16:09 | 只看該作者
42#
發(fā)表于 2025-3-28 18:54:27 | 只看該作者
43#
發(fā)表于 2025-3-28 23:48:01 | 只看該作者
44#
發(fā)表于 2025-3-29 03:16:43 | 只看該作者
Games for Hybrid Logic,ybrid logic – an extension of modal logic that allows for explicit reference to worlds within the language. The main result is that the systematic search of winning strategies over all models can be finitized and thus reformulated as a proof system.
45#
發(fā)表于 2025-3-29 08:12:25 | 只看該作者
Verifying the Conversion into CNF in Dafny, correctness and termination is machine-checked using the Dafny language for both. The first approach is based on repeatedly applying a set of equivalences and is often presented in logic textbooks. The second approach is based on Tseitin’s transformation and is more efficient. We present the main i
46#
發(fā)表于 2025-3-29 13:52:45 | 只看該作者
47#
發(fā)表于 2025-3-29 15:56:47 | 只看該作者
Coherence via Focusing for Symmetric Skew Monoidal Categories,laws of left and right unitality and associativity are not required to be invertible, they are merely natural transformations with a specific orientation; (.) the structural law of symmetry is a natural isomorphism involving three objects rather than two. In this paper we study the structural proof
48#
發(fā)表于 2025-3-29 22:33:01 | 只看該作者
On the Subtle Nature of a Simple Logic of the Hide and Seek Game, to describe the winning condition of the seeker makes our logic undecidable. There are certain decidable fragments of first-order logic which behave in a similar fashion and we add a new modal variant to that class of logics. We also discuss the relative expressive power of the proposed logic in co
49#
發(fā)表于 2025-3-30 00:46:26 | 只看該作者
50#
發(fā)表于 2025-3-30 05:33:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
汨罗市| 吉水县| 平果县| 濮阳县| 定日县| 双城市| 饶阳县| 杭锦旗| 胶州市| 凌源市| 西宁市| 临夏市| 中宁县| 临邑县| 鄂尔多斯市| 如东县| 贵阳市| 濉溪县| 加查县| 长泰县| 耿马| 汤阴县| 平顺县| 都江堰市| 临泉县| 洪泽县| 东港市| 瑞金市| 湖州市| 加查县| 十堰市| 南陵县| 万荣县| 锡林浩特市| 原平市| 乌鲁木齐县| 讷河市| 鸡泽县| 徐水县| 中西区| 苍溪县|