找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic, Language, Information, and Computation; 27th International W Alexandra Silva,Renata Wassermann,Ruy de Queiroz Conference proceedings

[復(fù)制鏈接]
樓主: Lactase
41#
發(fā)表于 2025-3-28 15:16:09 | 只看該作者
42#
發(fā)表于 2025-3-28 18:54:27 | 只看該作者
43#
發(fā)表于 2025-3-28 23:48:01 | 只看該作者
44#
發(fā)表于 2025-3-29 03:16:43 | 只看該作者
Games for Hybrid Logic,ybrid logic – an extension of modal logic that allows for explicit reference to worlds within the language. The main result is that the systematic search of winning strategies over all models can be finitized and thus reformulated as a proof system.
45#
發(fā)表于 2025-3-29 08:12:25 | 只看該作者
Verifying the Conversion into CNF in Dafny, correctness and termination is machine-checked using the Dafny language for both. The first approach is based on repeatedly applying a set of equivalences and is often presented in logic textbooks. The second approach is based on Tseitin’s transformation and is more efficient. We present the main i
46#
發(fā)表于 2025-3-29 13:52:45 | 只看該作者
47#
發(fā)表于 2025-3-29 15:56:47 | 只看該作者
Coherence via Focusing for Symmetric Skew Monoidal Categories,laws of left and right unitality and associativity are not required to be invertible, they are merely natural transformations with a specific orientation; (.) the structural law of symmetry is a natural isomorphism involving three objects rather than two. In this paper we study the structural proof
48#
發(fā)表于 2025-3-29 22:33:01 | 只看該作者
On the Subtle Nature of a Simple Logic of the Hide and Seek Game, to describe the winning condition of the seeker makes our logic undecidable. There are certain decidable fragments of first-order logic which behave in a similar fashion and we add a new modal variant to that class of logics. We also discuss the relative expressive power of the proposed logic in co
49#
發(fā)表于 2025-3-30 00:46:26 | 只看該作者
50#
發(fā)表于 2025-3-30 05:33:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清水河县| 拉孜县| 铜陵市| 伊川县| 永兴县| 罗源县| 中超| 宁都县| 安宁市| 厦门市| 淅川县| 蒲江县| 凤庆县| 通江县| 甘谷县| 延边| 米泉市| 丰县| 鄂伦春自治旗| 邯郸市| 浠水县| 瑞金市| 察雅县| 香格里拉县| 从江县| 应城市| 鹤峰县| 洛阳市| 祁东县| 吉安县| 南安市| 南宫市| 保定市| 镇坪县| 津南区| 沁源县| 临沧市| 宁晋县| 上杭县| 上蔡县| 新沂市|