找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic, Language, Information, and Computation; 30th International W George Metcalfe,Thomas Studer,Ruy de Queiroz Conference proceedings 202

[復制鏈接]
樓主: 法令
31#
發(fā)表于 2025-3-27 00:58:27 | 只看該作者
32#
發(fā)表于 2025-3-27 04:10:41 | 只看該作者
33#
發(fā)表于 2025-3-27 06:56:14 | 只看該作者
34#
發(fā)表于 2025-3-27 13:11:27 | 只看該作者
,(In)consistency Operators on?Quasi-Nelson Algebras, aim is to pave the way for introducing logics of formal inconsistency (LFIs) in a non-necessarily involutive setting. We show how several results that were obtained for LFIs based on distributive involutive residuated lattices can be extended to quasi-Nelson algebras and their logic. We prove that
35#
發(fā)表于 2025-3-27 17:26:29 | 只看該作者
36#
發(fā)表于 2025-3-27 17:52:38 | 只看該作者
37#
發(fā)表于 2025-3-28 00:35:05 | 只看該作者
,Modal Hyperdoctrine: Higher-Order and?Non-normal Extensions,d to higher-order systems. We return to Ghilardi’s hyperdoctrine semantics for first-order modal logic [.] and extend it in two directions—to weaker, non-normal modal logics and to higher-order modal logics. We also relate . modal hyperdoctrines to intuitionistic hyperdoctrines via a hyperdoctrinal
38#
發(fā)表于 2025-3-28 02:56:35 | 只看該作者
39#
發(fā)表于 2025-3-28 07:22:46 | 只看該作者
,Logical Expressibility of?Syntactic NL for?Complementarity and?Maximization,y SNL was first introduced in 2017 as a “syntactically”-defined natural subclass of NL using a restricted form of second-order logic in close connection to the so-called linear space hypothesis. We further explore various properties of this complexity class SNL. In particular, we consider the expres
40#
發(fā)表于 2025-3-28 10:35:27 | 只看該作者
,Polyadic Quantifiers on?Dependent Types,rting scope, as illustrated by the example .. The . relation, expressed by the preposition . in this example, introduces a dependency between wholes (months) and their respective parts (days). Quantifying over this dependency yields the inverse scope reading: for every month, there is a different da
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宕昌县| 香格里拉县| 咸宁市| 阿勒泰市| 民和| 滨海县| 乌恰县| 南江县| 关岭| 历史| 富源县| 西峡县| 永定县| 衢州市| 长子县| 吴堡县| 湛江市| 建瓯市| 合水县| 息烽县| 安塞县| 铁岭市| 西宁市| 睢宁县| 威远县| 开原市| 开封市| 东宁县| 县级市| 闸北区| 广州市| 新源县| 浙江省| 太和县| 贵港市| 都江堰市| 旅游| 平罗县| 兴和县| 刚察县| 华宁县|