找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic for Programming, Artificial Intelligence, and Reasoning; 15th International C Iliano Cervesato,Helmut Veith,Andrei Voronkov Conferenc

[復(fù)制鏈接]
樓主: 全體
11#
發(fā)表于 2025-3-23 10:54:10 | 只看該作者
Nominal Renaming Setsfinitely-supported atoms-renaming action; renamings can identify atoms, permutations cannot. We show that nominal renaming sets exhibit many of the useful qualities found in (permutative) nominal sets; an elementary sets-based presentation, inductive datatypes of syntax up to binding, cartesian clos
12#
發(fā)表于 2025-3-23 14:28:41 | 只看該作者
13#
發(fā)表于 2025-3-23 19:17:48 | 只看該作者
14#
發(fā)表于 2025-3-24 00:39:19 | 只看該作者
15#
發(fā)表于 2025-3-24 02:30:40 | 只看該作者
Recurrent Reachability Analysis in Regular Model Checkingt of states can be reached infinitely often from a given initial state in the given transition system. Under the condition that the transitive closure of the transition relation is regular, we show that the problem is decidable, and the set of all initial states satisfying the property is regular. M
16#
發(fā)表于 2025-3-24 08:28:39 | 只看該作者
Alternation Elimination by Complementation (Extended Abstract)ch constructions are of practical interest in finite-state model checking, since formulas of widely used linear-time temporal logics with future and past operators can directly be translated into alternating automata. We present a construction scheme that can be instantiated for different automata c
17#
發(fā)表于 2025-3-24 12:38:34 | 只看該作者
18#
發(fā)表于 2025-3-24 16:29:29 | 只看該作者
(LIA) - Model Evolution with Linear Integer Arithmetic Constraintsegers in current theorem provers is sometimes too weak for practical purposes. In this paper we propose a novel calculus for a large fragment of first-order logic modulo Linear Integer Arithmetic (LIA) that overcomes several limitations of existing theory reasoning approaches. The new calculus — bas
19#
發(fā)表于 2025-3-24 19:26:03 | 只看該作者
20#
發(fā)表于 2025-3-24 23:49:42 | 只看該作者
Joao Marques-Silva,Inês Lynce,Vasco Manquinhoen lie?. Kleist war mit diesem Portr?t nicht zufrieden. ?Es liegt etwas Sp?ttisches darin, das mir nicht gef?llt, ich wollte er [der Maler Peter Friedel] h?tte mich ehrlicher gemalt?, schreibt er am 9. April 1801 an Wilhelmine. Zu Unrecht, meines Erachtens. Friedel malte einerseits die melancholisch
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黎城县| 武威市| 岗巴县| 治多县| 华安县| 泗洪县| 高淳县| 汝州市| 阿图什市| 射阳县| 开化县| 遂昌县| 湖口县| 南丰县| 万全县| 克什克腾旗| 洛宁县| 萝北县| 阿坝| 华池县| 鄢陵县| 彭泽县| 绿春县| 河源市| 通河县| 银川市| 新昌县| 西充县| 南昌市| 汶川县| 奉贤区| 青阳县| 孝昌县| 通州区| 永福县| 民和| 翼城县| 安泽县| 平度市| 调兵山市| 中卫市|