找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic and Its Applications; 8th Indian Conferenc Md. Aquil Khan,Amaldev Manuel Conference proceedings 2019 Springer-Verlag GmbH Germany, pa

[復(fù)制鏈接]
樓主: Grant
21#
發(fā)表于 2025-3-25 04:25:21 | 只看該作者
22#
發(fā)表于 2025-3-25 09:22:04 | 只看該作者
23#
發(fā)表于 2025-3-25 15:14:43 | 只看該作者
24#
發(fā)表于 2025-3-25 19:47:10 | 只看該作者
The Finite Embeddability Property for Topological Quasi-Boolean Algebra 5,In this paper we study some basic algebraic structures of rough algebras. We proved that the class of topological quasi-Boolean algebra 5s (tqBa5s) has the finite embeddability property (FEP). Further we also extend this result to some related classes of algebras.
25#
發(fā)表于 2025-3-25 23:31:06 | 只看該作者
Model Theory for Sheaves of Modules,We describe how the model theory of modules is adapted to deal with sheaves of modules.
26#
發(fā)表于 2025-3-26 02:00:44 | 只看該作者
27#
發(fā)表于 2025-3-26 06:31:50 | 只看該作者
28#
發(fā)表于 2025-3-26 10:20:27 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/l/image/587973.jpg
29#
發(fā)表于 2025-3-26 13:11:45 | 只看該作者
Infinite Liar in a (Modal) Finitistic Setting, uniform disquotation or the .-rule results in inconsistency. One might think that it doesn’t arise in finitary contexts. We study whether it does. It turns out that the issue turns on how the finitistic approach is formalized.
30#
發(fā)表于 2025-3-26 19:03:34 | 只看該作者
Public Announcements for Epistemic Models and Hypertheories,ith public announcements and the corresponding belief change operation. We establish a soundness and completeness result and show that our model update operation satisfies the AGM postulate of minimal change. Further, we also show that the standard approach cannot be directly employed to capture knowledge change by truthful announcements.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
交城县| 荃湾区| 双流县| 延庆县| 英吉沙县| 光泽县| 保定市| 博客| 通州市| 霸州市| 天柱县| 上高县| 邳州市| 得荣县| 五家渠市| 阜新市| 信丰县| 洛浦县| 包头市| 麻阳| 那曲县| 邹城市| 阿克苏市| 东乌| 谷城县| 安远县| 汉阴县| 遵义市| 通榆县| 榕江县| 称多县| 沁水县| 武定县| 高邮市| 勃利县| 刚察县| 三原县| 宁南县| 海盐县| 伊宁县| 荣成市|