找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic and Its Applications; Fourth Indian Confer Mohua Banerjee,Anil Seth Conference proceedings 2011 Springer Berlin Heidelberg 2011 Frege

[復(fù)制鏈接]
樓主: 皺紋
21#
發(fā)表于 2025-3-25 04:18:54 | 只看該作者
Becoming Aware of Propositional Variables,We examine a logic that combines knowledge, awareness, and change of awareness. Change of awareness involves that an agent becomes aware of propositional variables. We show that the logic is decidable, and we present a complete axiomatization.
22#
發(fā)表于 2025-3-25 08:00:47 | 只看該作者
Mohua Banerjee,Anil SethState-of-the-art research.Fast-track conference proceedings.Unique visibility
23#
發(fā)表于 2025-3-25 13:27:22 | 只看該作者
24#
發(fā)表于 2025-3-25 18:36:11 | 只看該作者
25#
發(fā)表于 2025-3-25 22:30:12 | 只看該作者
A Stochastic Interpretation of Propositional Dynamic Logic: Expressivity,neral measurable spaces. Bisimilarity is also discussed and shown to be equivalent to logical and behavioral equivalence, provided the base spaces are Polish spaces. We adapt techniques from coalgebraic stochastic logic and point out some connections to Souslin’s operation . from descriptive set theory.
26#
發(fā)表于 2025-3-26 00:28:56 | 只看該作者
A Qualitative Approach to Uncertainty,express different levels of uncertainties explicitly in the logical language. After introducing a . modal framework, we discuss the different possibilities of an agent’s attitude towards a proposition that can be expressed in this framework, and provide a preliminary look at the dynamics of the situation.
27#
發(fā)表于 2025-3-26 05:54:18 | 只看該作者
28#
發(fā)表于 2025-3-26 09:09:55 | 只看該作者
,A Note on Nathanial’s Invariance Principle in Polyadic Inductive Logic,bit a family of basic probability functions satisfying this principle. We conjecture that every probability function satisfying this principle can be approximated arbitrarily closely by a convex combination of these basic solutions.
29#
發(fā)表于 2025-3-26 13:17:17 | 只看該作者
Ultrafilter Extensions of Models,orphisms: any homomorphism of?. into . extends to a?continuous homomorphism of . into?.. Moreover, if a?model?. carries a?compact Hausdorff topology which is (in a?certain sense) compatible, then any homomorphism of . into?. extends to a?continuous homomorphism of . into?.. This is also true for embeddings instead of homomorphisms.
30#
發(fā)表于 2025-3-26 20:27:44 | 只看該作者
Logic in the Community,s, knowledge and preferences. Knowledge, belief, preferences and even the social relationships are constantly changing, and yet our ability to keep track of these changes is an important part of what it means to belong to a community.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍州市| 临泉县| 陕西省| 宽城| 静海县| 隆德县| 军事| 温宿县| 昭苏县| 永寿县| 鹤峰县| 九龙坡区| 五莲县| 罗城| 康乐县| 东莞市| 同江市| 忻州市| 丰都县| 彭水| 河东区| 昭平县| 新巴尔虎左旗| 灵宝市| 鄯善县| 嘉鱼县| 武威市| 安溪县| 玉屏| 普兰店市| 辉县市| 金川县| 旅游| 平武县| 板桥市| 山东省| 西昌市| 清水河县| 岚皋县| 乌什县| 五指山市|