找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic Synthesis for Genetic Diseases; Modeling Disease Beh Pey-Chang Kent Lin,Sunil P. Khatri Book 2014 Springer Science+Business Media New

[復(fù)制鏈接]
樓主: 武士精神
21#
發(fā)表于 2025-3-25 07:10:20 | 只看該作者
22#
發(fā)表于 2025-3-25 10:41:57 | 只看該作者
Determining Gene Function in Boolean Networks using SAT a multitude of GRNs may satisfy the observed behavior, yielding a reduced certainty in the final result due to lack of data. We will also study the behavior of the number of satisfying GRNs with respect to the number of observations ..
23#
發(fā)表于 2025-3-25 12:13:03 | 只看該作者
del the genetic disease behavior as a BN, with powerful implicit enumeration techniques. Coverage also includes techniques from VLSI testing to control a faulty BN, transforming its behavior to a healthy BN, potentially aiding in efforts to find the best candidates for treatment of genetic diseases.978-1-4939-5535-0978-1-4614-9429-4
24#
發(fā)表于 2025-3-25 17:36:25 | 只看該作者
25#
發(fā)表于 2025-3-25 22:21:28 | 只看該作者
emonstrates how techniques such as Boolean Satisfiability (SThis book brings to bear a body of logic synthesis techniques, in order to contribute to the analysis and control of Boolean Networks (BN) for modeling genetic diseases such as cancer. The authors provide several VLSI logic techniques to mo
26#
發(fā)表于 2025-3-26 03:45:19 | 只看該作者
27#
發(fā)表于 2025-3-26 06:48:41 | 只看該作者
28#
發(fā)表于 2025-3-26 11:39:30 | 只看該作者
29#
發(fā)表于 2025-3-26 16:16:06 | 只看該作者
Predictor Set Inference using SATach CNF is solved using a SAT solver to find candidate predictor sets. Statistical analysis of the resulting predictor sets selects the most likely predictor set of the GRN, corresponding to the attractor data. We demonstrate our algorithm on attractor state data from a melanoma study and present our predictor set results.
30#
發(fā)表于 2025-3-26 19:38:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 09:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上高县| 侯马市| 类乌齐县| 抚州市| 进贤县| 白玉县| 台南县| 改则县| 乌拉特后旗| 牡丹江市| 周至县| 林周县| 南溪县| 高要市| 宜昌市| 建阳市| 慈溪市| 崇明县| 平罗县| 罗平县| 菏泽市| 闽清县| 额敏县| 东乡县| 吴忠市| 太湖县| 和田市| 晋江市| 阆中市| 辽宁省| 澄迈县| 通辽市| 高密市| 邻水| 彰化市| 金山区| 屏南县| 定西市| 庄河市| 古交市| 泰兴市|