找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Loewy Decomposition of Linear Differential Equations; Fritz Schwarz Book 2012 Springer-Verlag Wien 2012 Computer Algebra Software.Differen

[復(fù)制鏈接]
查看: 38593|回復(fù): 37
樓主
發(fā)表于 2025-3-21 18:10:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Loewy Decomposition of Linear Differential Equations
編輯Fritz Schwarz
視頻videohttp://file.papertrans.cn/588/587847/587847.mp4
概述Most advanced and most complete text on closed form solutions of linear partial differential equations.Provides more than 50 worked out examples and exercises including solutions.The results described
叢書(shū)名稱(chēng)Texts & Monographs in Symbolic Computation
圖書(shū)封面Titlebook: Loewy Decomposition of Linear Differential Equations;  Fritz Schwarz Book 2012 Springer-Verlag Wien 2012 Computer Algebra Software.Differen
描述The central subject of the book is the generalization of Loewy‘s decomposition - originally introduced by him for linear ordinary differential equations - to linear partial differential equations. Equations for a single function in two independent variables of order two or three are comprehensively discussed. A complete list of possible solution types is given. Various ad hoc results available in the literature are obtained algorithmically. The border of decidability for generating a Loewy decomposition are explicitly stated. The methods applied may be generalized in an obvious way to equations of higher order, in more variables or systems of such equations.
出版日期Book 2012
關(guān)鍵詞Computer Algebra Software; Differential Algebra; Partial Differential Equations
版次1
doihttps://doi.org/10.1007/978-3-7091-1286-1
isbn_softcover978-3-7091-1687-6
isbn_ebook978-3-7091-1286-1Series ISSN 0943-853X Series E-ISSN 2197-8409
issn_series 0943-853X
copyrightSpringer-Verlag Wien 2012
The information of publication is updating

書(shū)目名稱(chēng)Loewy Decomposition of Linear Differential Equations影響因子(影響力)




書(shū)目名稱(chēng)Loewy Decomposition of Linear Differential Equations影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Loewy Decomposition of Linear Differential Equations網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Loewy Decomposition of Linear Differential Equations網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Loewy Decomposition of Linear Differential Equations被引頻次




書(shū)目名稱(chēng)Loewy Decomposition of Linear Differential Equations被引頻次學(xué)科排名




書(shū)目名稱(chēng)Loewy Decomposition of Linear Differential Equations年度引用




書(shū)目名稱(chēng)Loewy Decomposition of Linear Differential Equations年度引用學(xué)科排名




書(shū)目名稱(chēng)Loewy Decomposition of Linear Differential Equations讀者反饋




書(shū)目名稱(chēng)Loewy Decomposition of Linear Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:46:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:04:53 | 只看該作者
Equations with Finite-Dimensional Solution Space,constants. In other words, its general solution has the structure of a finite-dimensional vector space over constants like in the ordinary case. At first the Loewy decomposition of such systems in two independent variables containing derivatives of order not higher than three are discussed. Subsequently they are applied for finding its solutions.
地板
發(fā)表于 2025-3-22 08:00:11 | 只看該作者
Solving Homogeneous Third-Order Equations,he structure of the solutions of linear pde’s on page 91 apply here as well. Similar as for second-order equations, various cases differing by leading derivatives are distinguished. As opposed to second-order equations, third-order equations have virtually never been treated in the literature before.
5#
發(fā)表于 2025-3-22 10:58:29 | 只看該作者
6#
發(fā)表于 2025-3-22 16:26:46 | 只看該作者
7#
發(fā)表于 2025-3-22 19:59:11 | 只看該作者
8#
發(fā)表于 2025-3-22 21:13:48 | 只看該作者
9#
發(fā)表于 2025-3-23 03:24:26 | 只看該作者
10#
發(fā)表于 2025-3-23 06:46:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝丰县| 垣曲县| 额敏县| 白沙| 清远市| 佳木斯市| 会泽县| 于田县| 杭锦后旗| 富裕县| 会同县| 梁平县| 砚山县| 新田县| 凯里市| 永州市| 鄂尔多斯市| 高邑县| 阿合奇县| 会东县| 鹤山市| 繁峙县| 阿坝县| 永丰县| 迭部县| 哈尔滨市| 丰都县| 应用必备| 丰顺县| 搜索| 罗源县| 八宿县| 托克托县| 昭平县| 青铜峡市| 七台河市| 乐清市| 西林县| 建水县| 丽江市| 岗巴县|