找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Localization in Underwater Sensor Networks; Jing Yan,Haiyan Zhao,Xinping Guan Book 2021 The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
樓主: 憑票入場
31#
發(fā)表于 2025-3-26 21:35:42 | 只看該作者
Introduction,This chapter presents the network architecture of underwater sensor networks (USNs). According to the different measurement ways, the localization schemes for wireless sensor networks are briefly reviewed. Based on this, the weak communication characteristics of USNs are summarized, through which the problems studied in this book are provided.
32#
發(fā)表于 2025-3-27 01:37:16 | 只看該作者
33#
發(fā)表于 2025-3-27 07:19:40 | 只看該作者
Localization in Underwater Sensor Networks978-981-16-4831-1Series ISSN 2366-1186 Series E-ISSN 2366-1445
34#
發(fā)表于 2025-3-27 11:00:23 | 只看該作者
35#
發(fā)表于 2025-3-27 15:31:23 | 只看該作者
Asynchronous Localization of Underwater Sensor Networks with Mobility Prediction,in this chapter can reduce the localization time as compared with the exhaustive search-based localization method. Meanwhile, it can effectively eliminate the influences of clock asynchronization and node mobility.
36#
發(fā)表于 2025-3-27 18:52:04 | 只看該作者
Async-Localization of USNs with Consensus-Based Unscented Kalman Filtering,ower bounds and convergence conditions are also analyzed. Finally, simulation results show that the proposed localization algorithm can reduce the localization time as compared with the exhaustive search method. Meanwhile, the proposed localization algorithm can improve localization accuracy by comparing with other works.
37#
發(fā)表于 2025-3-28 00:07:41 | 只看該作者
Privacy Preserving Asynchronous Localization of USNs,nd experiment results show that the proposed localization algorithms can avoid the leakage of location information, while the localization accuracy can be significantly enhanced by comparing with the other works.
38#
發(fā)表于 2025-3-28 02:08:52 | 只看該作者
39#
發(fā)表于 2025-3-28 08:45:48 | 只看該作者
40#
發(fā)表于 2025-3-28 12:29:35 | 只看該作者
Reinforcement Learning-Based Asynchronous Localization of USNs,lem due to its insensitivity to the local optimal. Besides that, the performance analyses of proposed algorithm are given. Finally, simulation and experimental results show that the localization performance in this chapter can be significantly improved as compared with the other works.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂州市| 徐闻县| 朝阳市| 柯坪县| 铁岭市| 农安县| 浮山县| 乌拉特后旗| 鄂托克旗| 丁青县| 永和县| 临潭县| 绥德县| 建水县| 上思县| 岳阳县| 新河县| 雷州市| 卓尼县| 长沙市| 平罗县| 霞浦县| 淮安市| 湾仔区| 新泰市| 右玉县| 郧西县| 焉耆| 安丘市| 巴马| 喜德县| 黄龙县| 呼伦贝尔市| 白河县| 德江县| 宜章县| 武隆县| 禹州市| 江永县| 合肥市| 孟津县|