找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Localization in Group Theory and Homotopy Theory and Related Topics; Battelle Seattle 197 Peter J. Hilton Conference proceedings 1974 Sprin

[復(fù)制鏈接]
樓主: malcontented
21#
發(fā)表于 2025-3-25 05:44:21 | 只看該作者
de juiste wijze op voor te bereiden. Het boek is rijk ge?llustreerd met kleurenafbeeldingen.Keel-neus-oor-aandoeningen is een kwaliteitshandboek dat tot stand is gekomen door nauwe samenwerking tussen huisartsen en specialisten. Het is een onmisbare uitgave voor huisartsen en zal nuttig zijn voor an
22#
發(fā)表于 2025-3-25 07:33:00 | 只看該作者
A functor which localizes the higher homotopy groups of an arbitrary C. W. complex,
23#
發(fā)表于 2025-3-25 14:19:00 | 只看該作者
Homological localizations of spaces, groups, and II-modules,
24#
發(fā)表于 2025-3-25 17:01:42 | 只看該作者
25#
發(fā)表于 2025-3-25 22:43:33 | 只看該作者
Nilpotent groups, homotopy types and rational lie algebras,
26#
發(fā)表于 2025-3-26 01:58:36 | 只看該作者
27#
發(fā)表于 2025-3-26 06:42:43 | 只看該作者
ometimes “norms”, sometimes “rules”, “directives” etc. The semantic relations of these terms are not clear and precise: hence the recurrent attempts at defining and correlating them as well as at establishing further terminology for the classification of “norms”, “rules”, or “directives”. For the pu
28#
發(fā)表于 2025-3-26 11:57:23 | 只看該作者
Martin Benderskyehensively covered in book form.The authors are internationa.In this text?the authors?consider the Korteweg-de Vries?(KdV) equation (u.t. = - u.xxx. + 6uu.x.) with periodic boundary conditions. Derived to describe long surface waves in a narrow and shallow channel, this equation in fact models waves
29#
發(fā)表于 2025-3-26 15:35:38 | 只看該作者
A. K. Bousfieldehensively covered in book form.The authors are internationa.In this text?the authors?consider the Korteweg-de Vries?(KdV) equation (u.t. = - u.xxx. + 6uu.x.) with periodic boundary conditions. Derived to describe long surface waves in a narrow and shallow channel, this equation in fact models waves
30#
發(fā)表于 2025-3-26 18:01:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
姜堰市| 剑阁县| 会同县| 溆浦县| 沙河市| 盈江县| 宝鸡市| 通渭县| 原平市| 株洲县| 吉木乃县| 黔南| 罗山县| 东城区| 新野县| 廉江市| 山阴县| 广州市| 麟游县| 河北省| 淮阳县| 商洛市| 乌兰察布市| 山阳县| 泸水县| 长子县| 通河县| 封开县| 普宁市| 奇台县| 淳安县| 安徽省| 赤壁市| 泸州市| 玉田县| 扎鲁特旗| 万年县| 宾阳县| 常州市| 漳浦县| 耒阳市|