找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Local and Nonlocal Micromechanics of Heterogeneous Materials; Valeriy A. Buryachenko Book 2022 The Editor(s) (if applicable) and The Autho

[復制鏈接]
樓主: 候選人名單
11#
發(fā)表于 2025-3-23 12:16:52 | 只看該作者
12#
發(fā)表于 2025-3-23 17:42:21 | 只看該作者
Nonlocal Effects in Micromechanics of Locally Elastic CMs,rature method or the iteration one. Solution for a microinhomogeneous half-space is presented through the operator form of perturbators in the framework of the generalized quasi-crystalline approximation.
13#
發(fā)表于 2025-3-23 18:32:29 | 只看該作者
14#
發(fā)表于 2025-3-24 01:34:18 | 只看該作者
Bond-Based Peridynamics,se potential function, and peridynamic stress are presented. Volumetric boundary conditions are defined, and the linearized microelastic model is considered. Damage is introduced by permitting damaged bonds to break irreversibly by bond removing if the bond stretch exceeds a critical stretch.
15#
發(fā)表于 2025-3-24 05:26:33 | 只看該作者
16#
發(fā)表于 2025-3-24 07:48:02 | 只看該作者
17#
發(fā)表于 2025-3-24 11:14:41 | 只看該作者
Computational Homogenization in Linear Peridynamic Micromechanics of Periodic Structure CMs,i. Effective moduli of peridynamic medium with periodically distributed damage are estimated. The volumetric Bloch-Floquet periodic boundary condition is proposed. The scheme of data-driven learning of nonlocal models is presented.
18#
發(fā)表于 2025-3-24 15:05:49 | 只看該作者
19#
發(fā)表于 2025-3-24 21:51:29 | 只看該作者
20#
發(fā)表于 2025-3-25 01:30:28 | 只看該作者
Basic Representations of New Background of Analytical Micromechanics,mation ., the hypothesis of “ellipsoidal symmetry” ., and Eshelby tensor. Abandonment of a few different combinations of these hypotheses leads to detection of some new effects that are impossible in the framework of a classical background of micromechanics analyzed in Chap. ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
馆陶县| 辽阳县| 陇川县| 大田县| 来凤县| 孝感市| 永顺县| 香格里拉县| 澄江县| 青田县| 上思县| 嘉黎县| 马尔康县| 原平市| 赫章县| 开江县| 台东市| 马公市| 尼木县| 龙山县| 九江市| 缙云县| 辉县市| 宁武县| 宁海县| 沙雅县| 观塘区| 闽侯县| 昆明市| 桦甸市| 靖江市| 三都| 金寨县| 昌江| 固始县| 顺昌县| 什邡市| 长海县| 若羌县| 卫辉市| 扶风县|