找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Local Times and Excursion Theory for Brownian Motion; A Tale of Wiener and Ju-Yi Yen,Marc Yor Book 2013 Springer International Publishing S

[復(fù)制鏈接]
樓主: EXTRA
41#
發(fā)表于 2025-3-28 17:16:29 | 只看該作者
Local Times and Excursion Theory for Brownian MotionA Tale of Wiener and
42#
發(fā)表于 2025-3-28 20:32:16 | 只看該作者
Lévy’s Representation of Reflecting BM and Pitman’s Representation of BES(3)ubtracts Brownian motion from twice its one sided supremum, the obtained process is distributed as a BES(3) process. Extensions of these theorems to Brownian motion with drift are shown. The Azéma–Yor explicit solution to Skorokhod’s embedding problem is shown; it involves a first hitting time by Brownian motion and its one-sided supremum.
43#
發(fā)表于 2025-3-29 01:30:08 | 只看該作者
44#
發(fā)表于 2025-3-29 05:19:47 | 只看該作者
Brownian Excursion Theory: A First Approachicative one, are proven. They allow to compute expectations of sums or products of excursion functionals in terms of .. The Lévy measures of Brownian additive functionals, considered at inverse local time are shown to be expressible in terms of .. The distributions of the lifetime and the maximum of the generic excursion under . are computed.
45#
發(fā)表于 2025-3-29 08:49:06 | 只看該作者
A Simple Path Decomposition of Brownian Motion Around Time , = 1Brownian bridge, the BES(3) bridge, and the Brownian meander. Independence properties of the Brownian meander allow to study Azéma’s remarkable martingale, which enjoys the chaos representation property, as shown by Emery.
46#
發(fā)表于 2025-3-29 15:22:52 | 只看該作者
47#
發(fā)表于 2025-3-29 18:51:38 | 只看該作者
Integral Representations Relating W and nrse local time integral of Wiener measure and the level integral of Wiener measure up to first hit of 0 by Brownian motion, or last passage time at a level by the BES(3) process. These relations shall play a key role in our derivation of the Feynman–Kac formula in the next chapter.
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 08:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湄潭县| 修武县| 盘山县| 江西省| 庄河市| 库车县| 阿图什市| 广州市| 囊谦县| 巴中市| 外汇| 将乐县| 那曲县| 怀仁县| 新民市| 新昌县| 财经| 宁津县| 鹰潭市| 灌南县| 临安市| 蒙自县| 涞源县| 满洲里市| 长治县| 华安县| 宝兴县| 阿拉善左旗| 保靖县| 潼关县| 石林| 加查县| 深圳市| 资兴市| 昌乐县| 法库县| 吴忠市| 岳普湖县| 元氏县| 连平县| 滁州市|