找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Local Times and Excursion Theory for Brownian Motion; A Tale of Wiener and Ju-Yi Yen,Marc Yor Book 2013 Springer International Publishing S

[復(fù)制鏈接]
樓主: EXTRA
41#
發(fā)表于 2025-3-28 17:16:29 | 只看該作者
Local Times and Excursion Theory for Brownian MotionA Tale of Wiener and
42#
發(fā)表于 2025-3-28 20:32:16 | 只看該作者
Lévy’s Representation of Reflecting BM and Pitman’s Representation of BES(3)ubtracts Brownian motion from twice its one sided supremum, the obtained process is distributed as a BES(3) process. Extensions of these theorems to Brownian motion with drift are shown. The Azéma–Yor explicit solution to Skorokhod’s embedding problem is shown; it involves a first hitting time by Brownian motion and its one-sided supremum.
43#
發(fā)表于 2025-3-29 01:30:08 | 只看該作者
44#
發(fā)表于 2025-3-29 05:19:47 | 只看該作者
Brownian Excursion Theory: A First Approachicative one, are proven. They allow to compute expectations of sums or products of excursion functionals in terms of .. The Lévy measures of Brownian additive functionals, considered at inverse local time are shown to be expressible in terms of .. The distributions of the lifetime and the maximum of the generic excursion under . are computed.
45#
發(fā)表于 2025-3-29 08:49:06 | 只看該作者
A Simple Path Decomposition of Brownian Motion Around Time , = 1Brownian bridge, the BES(3) bridge, and the Brownian meander. Independence properties of the Brownian meander allow to study Azéma’s remarkable martingale, which enjoys the chaos representation property, as shown by Emery.
46#
發(fā)表于 2025-3-29 15:22:52 | 只看該作者
47#
發(fā)表于 2025-3-29 18:51:38 | 只看該作者
Integral Representations Relating W and nrse local time integral of Wiener measure and the level integral of Wiener measure up to first hit of 0 by Brownian motion, or last passage time at a level by the BES(3) process. These relations shall play a key role in our derivation of the Feynman–Kac formula in the next chapter.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桃源县| 台州市| 韶关市| 昌黎县| 崇义县| 镇安县| 邵阳县| 邵阳市| 简阳市| 崇礼县| 宁海县| 郓城县| 西峡县| 安阳市| 蕲春县| 苍南县| 广丰县| 垦利县| 夹江县| 诸城市| 曲沃县| 洛浦县| 潮州市| 康保县| 沁源县| 天津市| 红原县| 阿拉善右旗| 东平县| 邢台县| 通山县| 建水县| 郧西县| 拉孜县| 舞钢市| 出国| 瓦房店市| 郯城县| 田林县| 曲阳县| 城步|