找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Local Systems in Algebraic-Arithmetic Geometry; Hélène Esnault Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 22:10:53 | 只看該作者
32#
發(fā)表于 2025-3-27 01:42:02 | 只看該作者
33#
發(fā)表于 2025-3-27 05:59:18 | 只看該作者
Lecture 7: Companions, Integrality of Cohomologically Rigid Local Systems and of the Betti Moduli Se (.-adic version) of it (L. Lafforgue (Invent Math 147(1):1–241, 2002, Théorème VII.6) in dimension 1, Drinfeld (Moscow Math J 12(3):515–542, 2012, Theorem 1.1) in higher dimension in the smooth case), explain how we used Drinfeld’s theorem in the proof of Simpson’s integrality conjecture for cohom
34#
發(fā)表于 2025-3-27 12:23:39 | 只看該作者
Lecture 8: Rigid Local Systems and ,-Isocrystals, of ., yield .-isocrystals. This is proved in Esnault and Groechenig (Acta Math 225(1):103–158, 2020, Theorem 1.6), using the theory of Higgs-de Rham flows on the mod . reduction of .. We give here a .-adic proof of this theorem, obtained with Johan de Jong, which relies on the fact that for ., the
35#
發(fā)表于 2025-3-27 13:44:11 | 只看該作者
36#
發(fā)表于 2025-3-27 20:47:55 | 只看該作者
0075-8434 e presently out of reach.Proposes sub-conjectures that mightThe topological fundamental group of a smooth complex algebraic variety is poorly understood. One way to approach it is to consider its complex linear representations modulo conjugation, that is, its complex local systems. A fundamental pro
37#
發(fā)表于 2025-3-28 00:23:44 | 只看該作者
38#
發(fā)表于 2025-3-28 03:21:15 | 只看該作者
39#
發(fā)表于 2025-3-28 09:28:12 | 只看該作者
Lecture 7: Companions, Integrality of Cohomologically Rigid Local Systems and of the Betti Moduli Sow we combined this idea together with de Jong’s conjecture in order to define and obtain an integrability property of the Betti moduli space (de Jong and Esnault, Integrality of the Betti moduli space, 18 pp. Trans. AMS, to appear, Theorem 1.1).
40#
發(fā)表于 2025-3-28 13:39:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安多县| 望奎县| 武胜县| 沁阳市| 甘洛县| 封开县| 通化市| 从江县| 靖江市| 苏尼特左旗| 铜鼓县| 临沭县| 阿巴嘎旗| 大名县| 新和县| 宜宾市| 寿宁县| 台中市| 黑水县| 台南县| 华容县| 台南县| 敦化市| 朔州市| 聂荣县| 墨竹工卡县| 六盘水市| 二连浩特市| 台安县| 南部县| 伽师县| 阿拉尔市| 民权县| 惠来县| 裕民县| 嘉荫县| 景宁| 侯马市| 株洲县| 郴州市| 新余市|