找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Local Systems in Algebraic-Arithmetic Geometry; Hélène Esnault Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 22:10:53 | 只看該作者
32#
發(fā)表于 2025-3-27 01:42:02 | 只看該作者
33#
發(fā)表于 2025-3-27 05:59:18 | 只看該作者
Lecture 7: Companions, Integrality of Cohomologically Rigid Local Systems and of the Betti Moduli Se (.-adic version) of it (L. Lafforgue (Invent Math 147(1):1–241, 2002, Théorème VII.6) in dimension 1, Drinfeld (Moscow Math J 12(3):515–542, 2012, Theorem 1.1) in higher dimension in the smooth case), explain how we used Drinfeld’s theorem in the proof of Simpson’s integrality conjecture for cohom
34#
發(fā)表于 2025-3-27 12:23:39 | 只看該作者
Lecture 8: Rigid Local Systems and ,-Isocrystals, of ., yield .-isocrystals. This is proved in Esnault and Groechenig (Acta Math 225(1):103–158, 2020, Theorem 1.6), using the theory of Higgs-de Rham flows on the mod . reduction of .. We give here a .-adic proof of this theorem, obtained with Johan de Jong, which relies on the fact that for ., the
35#
發(fā)表于 2025-3-27 13:44:11 | 只看該作者
36#
發(fā)表于 2025-3-27 20:47:55 | 只看該作者
0075-8434 e presently out of reach.Proposes sub-conjectures that mightThe topological fundamental group of a smooth complex algebraic variety is poorly understood. One way to approach it is to consider its complex linear representations modulo conjugation, that is, its complex local systems. A fundamental pro
37#
發(fā)表于 2025-3-28 00:23:44 | 只看該作者
38#
發(fā)表于 2025-3-28 03:21:15 | 只看該作者
39#
發(fā)表于 2025-3-28 09:28:12 | 只看該作者
Lecture 7: Companions, Integrality of Cohomologically Rigid Local Systems and of the Betti Moduli Sow we combined this idea together with de Jong’s conjecture in order to define and obtain an integrability property of the Betti moduli space (de Jong and Esnault, Integrality of the Betti moduli space, 18 pp. Trans. AMS, to appear, Theorem 1.1).
40#
發(fā)表于 2025-3-28 13:39:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沛县| 高邑县| 沈丘县| 贞丰县| 凤翔县| 康定县| 鄢陵县| 新竹县| 广宁县| 北流市| 西昌市| 弥渡县| 清水县| 吉木乃县| 铜川市| 日土县| 醴陵市| 临清市| 汪清县| 湘乡市| 赞皇县| 涟源市| 高台县| 临高县| 获嘉县| 荥经县| 潞城市| 河曲县| 铜山县| 黄石市| 龙泉市| 长泰县| 永昌县| 原平市| 原阳县| 桂平市| 阜平县| 准格尔旗| 改则县| 吉隆县| 福清市|