找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Local Multipliers of C*-Algebras; Pere Ara,Martin Mathieu Book 2003 Springer-Verlag London 2003 C*-algebra.algebra.automorphism.operator t

[復(fù)制鏈接]
樓主: 不足木
21#
發(fā)表于 2025-3-25 04:20:20 | 只看該作者
22#
發(fā)表于 2025-3-25 11:15:14 | 只看該作者
23#
發(fā)表于 2025-3-25 13:51:18 | 只看該作者
24#
發(fā)表于 2025-3-25 19:04:37 | 只看該作者
Pere Ara,Martin Mathieuscheinungsverbot, die Flucht der Herausgeberin, Ludmilla Assing, nach Italien und die unter erschwerten verlegerischen Bedingungen doch noch zustandegekommene Edition überschattet bis in die Gegenwart die Besch?ftigung mit einem literarischen Nachla?, aus dessen Fundus die ‘Tagebücher’ aber nur eine
25#
發(fā)表于 2025-3-25 22:05:03 | 只看該作者
Pere Ara,Martin Mathieuher Hinsicht ma?geblich geblieben, sondern auch vom Standpunkt einer literarischen Wertung seines Gesamtwerks. Varnhagen repr?sentiert jedoch gerade als Tagebuchautor eine literaturgeschichtliche Entwicklungsphase, die gemessen an seiner Epoche, wie Friedrich Sengle bei aller Bewunderung für Varnhag
26#
發(fā)表于 2025-3-26 00:27:51 | 只看該作者
27#
發(fā)表于 2025-3-26 05:40:47 | 只看該作者
Pere Ara,Martin Mathieupanne zu sein. Die Erinnerung, da? Karl Bonhoeffer, geboren am 31. 2. 1868 in Neresheim in Württemberg, jetzt hundert Jahre alt geworden w?re, wird allerdings manchen aufhorchen lassen, der sich einen Sinn für historische Abl?ufe bewahrt hat. Ist er doch für viele jung geblieben in seinem noch frisc
28#
發(fā)表于 2025-3-26 11:01:58 | 只看該作者
29#
發(fā)表于 2025-3-26 13:42:56 | 只看該作者
panne zu sein. Die Erinnerung, da? Karl Bonhoeffer, geboren am 31. 2. 1868 in Neresheim in Württemberg, jetzt hundert Jahre alt geworden w?re, wird allerdings manchen aufhorchen lassen, der sich einen Sinn für historische Abl?ufe bewahrt hat. Ist er doch für viele jung geblieben in seinem noch frisc
30#
發(fā)表于 2025-3-26 18:47:22 | 只看該作者
Lie Mappings and Related Operators,l also obtain representation theorems for these in Sections 6.2 and 6.5, respectively. In order to establish the description of Lie isomorphisms (Theorem 6.5.24) we need to decompose a Jordan isomorphism of a boundedly centrally closed .- algebra into a sum of a multiplicative and an anti-multiplica
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辉县市| 安岳县| 大新县| 通渭县| 无为县| 黄龙县| 五原县| 旺苍县| 仁怀市| 平武县| 息烽县| 名山县| 远安县| 岐山县| 新建县| 昌图县| 彰武县| 都昌县| 讷河市| 青龙| 宜川县| 廉江市| 佛坪县| 海安县| 股票| 化州市| 镇巴县| 克东县| 蒙阴县| 乌鲁木齐市| 宁津县| 嘉峪关市| 衡阳市| 顺义区| 马鞍山市| 灌阳县| 乌鲁木齐县| 清水河县| 横峰县| 洞口县| 扶绥县|