找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Local Jet Bundle Formulation of B?ckland Transformations; With Applications to F. A. E. Pirani,D. C. Robinson,W. F. Shadwick Book 1979 D. R

[復(fù)制鏈接]
樓主: 選民
11#
發(fā)表于 2025-3-23 10:33:55 | 只看該作者
12#
發(fā)表于 2025-3-23 15:23:25 | 只看該作者
13#
發(fā)表于 2025-3-23 20:49:27 | 只看該作者
,B?cklund Maps : General Case,n the first. We proceed as far as possible along the lines laid down in section 3: Let M, N. and N. be C. mainfolds, and let . be a C. map. In the following, it is to be understood that h is a fixed positive integer, while k, l, m, n, q and s are non-negative integers whose ranges are specified in c
14#
發(fā)表于 2025-3-23 22:17:18 | 只看該作者
Connections,ed in the language of that theory. Equations (3.15) for example, suggest that a connection is lurking somewhere. In this section we propose two related formulations of B?cklund maps in terms of connections. In section 7 we employ these formulations to give a geometric interpretation of the “KdV Lie
15#
發(fā)表于 2025-3-24 04:44:15 | 只看該作者
16#
發(fā)表于 2025-3-24 09:05:33 | 只看該作者
,Solutions of the B?cklund Problem,n now to the main practical problem which is to find B?cklund maps whose integrability conditions are a given system of partial differential equations. On the face of it, the solution to this problem, which we have called the B?cklund problem, requires the determination of functions ψ. such that . (
17#
發(fā)表于 2025-3-24 14:23:52 | 只看該作者
Introduction,geometrical framework for understanding the properties of non-linear evolution equations and the techniques used to deal with them, although we do not consider all of these properties and techniques here.
18#
發(fā)表于 2025-3-24 16:12:04 | 只看該作者
Jet Bundles,lications we have in mind are rather different from theirs, but we should mention that the idea of a contact module, introduced in this section, is taken from Johnson’s paper, and the definition of a prolongation imitated from Goldschmidt’s.
19#
發(fā)表于 2025-3-24 20:23:45 | 只看該作者
20#
發(fā)表于 2025-3-25 00:42:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 02:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
姜堰市| 观塘区| 泸水县| 靖远县| 亳州市| 南雄市| 韶山市| 霍林郭勒市| 牙克石市| 遂平县| 成都市| 鄂温| 绿春县| 宜黄县| 马尔康县| 衢州市| 和龙市| 勃利县| 新沂市| 普兰店市| 泊头市| 同心县| 农安县| 湘潭县| 金堂县| 江永县| 琼结县| 潞城市| 吴川市| 聂荣县| 辽源市| 青阳县| 慈溪市| 汝州市| 名山县| 中方县| 富阳市| 塘沽区| 桦南县| 临西县| 白山市|