找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Local Homotopy Theory; John F. Jardine Book 2015 Springer-Verlag New York 2015 algebraic K-theory.higher category theory.homotopical algeb

[復(fù)制鏈接]
查看: 17472|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:04:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Local Homotopy Theory
編輯John F. Jardine
視頻videohttp://file.papertrans.cn/588/587664/587664.mp4
概述Equips the reader with the background necessary to understand recent advances in homotopy theory and algebraic geometry.Written by one of the main contributors to the field.Goes beyond the formalism o
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Local Homotopy Theory;  John F. Jardine Book 2015 Springer-Verlag New York 2015 algebraic K-theory.higher category theory.homotopical algeb
描述.This monograph on the homotopy theory of topologized diagrams of spaces and spectra gives an expert account of a subject at the foundation of motivic homotopy theory and the theory of topological modular forms in stable homotopy theory..Beginning with an introduction to the homotopy theory of simplicial sets and topos theory, the book covers core topics such as the unstable homotopy theory of simplicial presheaves and sheaves, localized theories, cocycles, descent theory, non-abelian cohomology, stacks, and local stable homotopy theory. A detailed treatment of the formalism of the subject is interwoven with explanations of the motivation, development, and nuances of ideas and results. The coherence of the abstract theory is elucidated through the use of widely applicable tools, such as Barr‘s theorem on Boolean localization, model structures on the category of simplicial presheaves on a site, and cocycle categories. A wealth of concrete examples convey the vitality and importance of the subject in topology, number theory, algebraic geometry, and algebraic .K-.theory..Assuming basic knowledge of algebraic geometry and homotopy theory, .Local Homotopy Theory. will appeal to research
出版日期Book 2015
關(guān)鍵詞algebraic K-theory; higher category theory; homotopical algebra; homotopy theory; model categories; motiv
版次1
doihttps://doi.org/10.1007/978-1-4939-2300-7
isbn_softcover978-1-4939-4044-8
isbn_ebook978-1-4939-2300-7Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag New York 2015
The information of publication is updating

書目名稱Local Homotopy Theory影響因子(影響力)




書目名稱Local Homotopy Theory影響因子(影響力)學(xué)科排名




書目名稱Local Homotopy Theory網(wǎng)絡(luò)公開度




書目名稱Local Homotopy Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Local Homotopy Theory被引頻次




書目名稱Local Homotopy Theory被引頻次學(xué)科排名




書目名稱Local Homotopy Theory年度引用




書目名稱Local Homotopy Theory年度引用學(xué)科排名




書目名稱Local Homotopy Theory讀者反饋




書目名稱Local Homotopy Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:44:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:21:19 | 只看該作者
地板
發(fā)表于 2025-3-22 05:54:25 | 只看該作者
5#
發(fā)表于 2025-3-22 11:29:43 | 只看該作者
6#
發(fā)表于 2025-3-22 15:56:23 | 只看該作者
John F. Jardinetenstein. Die gr??ten St?dte sind (Stand 1977): Zürich 710 900, Basel 370 000, Genf 325 900, Bern 283 900, Lausanne 228100, Luzern 157 100, Wintertbur 107 300, Biel 88 100, St. Gallen 87 500. Die Schweiz geh?rt zu den h?chstindustrialisierten Staaten der Erde. In Industrie und Handwerk sind 43 %, im Dienstlei978-3-409-99651-8978-3-663-13268-4
7#
發(fā)表于 2025-3-22 17:22:51 | 只看該作者
8#
發(fā)表于 2025-3-22 21:55:14 | 只看該作者
9#
發(fā)表于 2025-3-23 02:55:22 | 只看該作者
10#
發(fā)表于 2025-3-23 07:24:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苍南县| 福州市| 灵武市| 浦江县| 静乐县| 青岛市| 翁源县| 长白| 商南县| 宁海县| 灌云县| 闸北区| 乡宁县| 杨浦区| 固安县| 潼关县| 名山县| 泰顺县| 任丘市| 亚东县| 英吉沙县| 昌江| 泸州市| 高淳县| 杂多县| 阿克陶县| 南充市| 溧水县| 尚义县| 新野县| 平谷区| 巴中市| 盖州市| 临湘市| 南川市| 五指山市| 虞城县| 本溪| 汾阳市| 七台河市| 佛坪县|