找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Local Features in Natural Images via Singularity Theory; James Damon,Peter Giblin,Gareth Haslinger Book 2016 Springer International Publis

[復(fù)制鏈接]
樓主: palliative
41#
發(fā)表于 2025-3-28 15:11:22 | 只看該作者
42#
發(fā)表于 2025-3-28 18:45:15 | 只看該作者
43#
發(fā)表于 2025-3-29 02:53:26 | 只看該作者
Overviewwo general considerations are that the objects will either be surfaces with boundary edges (representing physical objects that are “thin surfaces”) or 3-dimensional objects whose boundary surfaces exhibit certain geometric features. We allow the surface features to be generic geometric features incl
44#
發(fā)表于 2025-3-29 04:40:49 | 只看該作者
Apparent Contours for Projections of Smooth Surfaces apparent contours resulting from viewer movement. Our approach to this will involve progressively adding more detailed structure to simpler situations. The starting point for this is the case where we have a single object whose boundary is a smooth surface . without geometric features. Hence, for t
45#
發(fā)表于 2025-3-29 10:32:44 | 只看該作者
46#
發(fā)表于 2025-3-29 12:46:05 | 只看該作者
Methods for Classification of Singularitiesrious equivalence groups by reducing to the induced actions of Lie groups on jet spaces. This involves using finite determinacy results and Mather’s geometric lemma for actions of Lie groups. This was considerably strengthened by the much improved order of determinacy results from the stronger metho
47#
發(fā)表于 2025-3-29 17:00:34 | 只看該作者
48#
發(fā)表于 2025-3-29 23:08:29 | 只看該作者
Stratifications of Generically Illuminated Surfaces with Geometric Features projection being stable for the interaction of the geometric features and the resulting shade/shadow curves. We carry this out by first using the abstract classification of stable germs at geometric feature points, and determining in Sect.?8.1 their distinct geometric realizations to obtain the cla
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东阳市| 罗甸县| 象州县| 巴塘县| 鄯善县| 兴仁县| 滁州市| 龙海市| 铁岭市| 永安市| 句容市| 唐海县| 财经| 文化| 泸水县| 察雅县| 十堰市| 威信县| 九江市| 镇沅| 琼中| 泽州县| 健康| 彭阳县| 卓资县| 盐池县| 远安县| 新蔡县| 涞源县| 云梦县| 新营市| 建阳市| 玉环县| 永兴县| 元谋县| 印江| 利川市| 延吉市| 柘荣县| 天等县| 霞浦县|