找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems; Mariana Haragus,Gérard Iooss Textbook 20

[復(fù)制鏈接]
樓主: 人工合成
11#
發(fā)表于 2025-3-23 13:01:41 | 只看該作者
Textbook 2011eader to use this reduction method by checking some clear assumptions. Written by recognised experts in the field of center manifold and normal form theory this book provides a much-needed graduate level text on bifurcation theory, center manifolds and normal form theory. It will appeal to graduate
12#
發(fā)表于 2025-3-23 14:54:56 | 只看該作者
13#
發(fā)表于 2025-3-23 20:39:26 | 只看該作者
Normal Forms,riable which “improves” locally a nonlinear system, in order to more easily recognize its dynamics. As we shall see, normal form transformations apply to general classes of nonlinear systems in ?. near a fixed point, here the origin, by just assuming a certain smoothness of the vector field. In part
14#
發(fā)表于 2025-3-24 00:05:16 | 只看該作者
15#
發(fā)表于 2025-3-24 03:45:07 | 只看該作者
Applications, Chapter?3, and the results on reversible bifurcations in Chapter?4. We discuss hydrodynamic instabilities arising in the Navier–Stokes equations in Section?5.1, and we consider in Section?5.2 the question of existence of traveling waves for three different situations: the water-wave problem; reacti
16#
發(fā)表于 2025-3-24 09:02:26 | 只看該作者
17#
發(fā)表于 2025-3-24 12:16:40 | 只看該作者
18#
發(fā)表于 2025-3-24 16:34:43 | 只看該作者
19#
發(fā)表于 2025-3-24 19:45:38 | 只看該作者
https://doi.org/10.1007/978-0-85729-112-7bifurcations; center manifold reduction; infinite dimensional dynamical systems; normal forms; travellin
20#
發(fā)表于 2025-3-24 23:11:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
翁牛特旗| 双峰县| 平陆县| 依兰县| 建德市| 岱山县| 安康市| 科技| 四会市| 衢州市| 重庆市| 闸北区| 景洪市| 二连浩特市| 融水| 高州市| 赣州市| 绥阳县| 多伦县| 威信县| 南涧| 正蓝旗| 南昌市| 长岛县| 察雅县| 新河县| 遂昌县| 廊坊市| 赣榆县| 临海市| 曲沃县| 大城县| 晋城| 藁城市| 凤山市| 台中县| 关岭| 正安县| 衡阳市| 隆回县| 武隆县|