找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Local Analytic Geometry; Basic Theory and App Theo Jong,Gerhard Pfister Textbook 2000 Springer Fachmedien Wiesbaden 2000 Algebraische Geome

[復制鏈接]
查看: 48879|回復: 45
樓主
發(fā)表于 2025-3-21 18:44:40 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Local Analytic Geometry
副標題Basic Theory and App
編輯Theo Jong,Gerhard Pfister
視頻videohttp://file.papertrans.cn/588/587591/587591.mp4
概述Mathematisches Lehrbuch: Singularit?tentheorie
叢書名稱Advanced Lectures in Mathematics
圖書封面Titlebook: Local Analytic Geometry; Basic Theory and App Theo Jong,Gerhard Pfister Textbook 2000 Springer Fachmedien Wiesbaden 2000 Algebraische Geome
描述Algebraic geometry is, loosely speaking, concerned with the study of zero sets of polynomials (over an algebraically closed field). As one often reads in prefaces of int- ductory books on algebraic geometry, it is not so easy to develop the basics of algebraic geometry without a proper knowledge of commutative algebra. On the other hand, the commutative algebra one needs is quite difficult to understand without the geometric motivation from which it has often developed. Local analytic geometry is concerned with germs of zero sets of analytic functions, that is, the study of such sets in the neighborhood of a point. It is not too big a surprise that the basic theory of local analytic geometry is, in many respects, similar to the basic theory of algebraic geometry. It would, therefore, appear to be a sensible idea to develop the two theories simultaneously. This, in fact, is not what we will do in this book, as the "commutative algebra" one needs in local analytic geometry is somewhat more difficult: one has to cope with convergence questions. The most prominent and important example is the substitution of division with remainder. Its substitution in local analytic geometry is called
出版日期Textbook 2000
關鍵詞Algebraische Geometrie; Algebraische Kurve; Kommutative Algebra; Komplexe Analysis; Singularit?t (Math; )
版次1
doihttps://doi.org/10.1007/978-3-322-90159-0
isbn_softcover978-3-528-03137-4
isbn_ebook978-3-322-90159-0Series ISSN 0932-7134 Series E-ISSN 2512-7039
issn_series 0932-7134
copyrightSpringer Fachmedien Wiesbaden 2000
The information of publication is updating

書目名稱Local Analytic Geometry影響因子(影響力)




書目名稱Local Analytic Geometry影響因子(影響力)學科排名




書目名稱Local Analytic Geometry網(wǎng)絡公開度




書目名稱Local Analytic Geometry網(wǎng)絡公開度學科排名




書目名稱Local Analytic Geometry被引頻次




書目名稱Local Analytic Geometry被引頻次學科排名




書目名稱Local Analytic Geometry年度引用




書目名稱Local Analytic Geometry年度引用學科排名




書目名稱Local Analytic Geometry讀者反饋




書目名稱Local Analytic Geometry讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:26:06 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:47:11 | 只看該作者
地板
發(fā)表于 2025-3-22 06:08:20 | 只看該作者
Basics of Analytic Geometry,In this chapter we start studying local analytic geometry, that is, the zero sets of analytic functions in a (small) neighborhood of a point. To see why we want to do so, we look at the affine hypersurface in ?. defined by ..-..(x + 1) = 0. In a small neighborhood . of (0,0) we see two “parts”, or components of .) = 0.
5#
發(fā)表于 2025-3-22 11:47:21 | 只看該作者
Theo Jong,Gerhard PfisterMathematisches Lehrbuch: Singularit?tentheorie
6#
發(fā)表于 2025-3-22 15:24:29 | 只看該作者
7#
發(fā)表于 2025-3-22 20:31:14 | 只看該作者
8#
發(fā)表于 2025-3-23 00:15:03 | 只看該作者
9#
發(fā)表于 2025-3-23 01:49:14 | 只看該作者
Deformations of Singularities,eformation of (., o), in case it has an isolated singularity. As the proof of this theorem is quite involved, we will first treat some special cases. So, in Section 10.1, we will consider isolated . singularities (., o) given by . = 0.
10#
發(fā)表于 2025-3-23 08:36:10 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
康马县| 安阳县| 宜春市| 屏东市| 淄博市| 武川县| 闸北区| 衡山县| 监利县| 广丰县| 焦作市| 顺义区| 宜君县| 隆安县| 桦甸市| 礼泉县| 正蓝旗| 桃园市| 宜君县| 肥乡县| 惠东县| 奉贤区| 仙游县| 清涧县| 东台市| 察雅县| 汪清县| 平南县| 雅江县| 泰来县| 施秉县| 惠安县| 宝鸡市| 大姚县| 建湖县| 南和县| 宁夏| 龙泉市| 九龙坡区| 安顺市| 周至县|