找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: List Decoding of Error-Correcting Codes; Winning Thesis of th Venkatesan Guruswami Book 2005 Springer-Verlag Berlin Heidelberg 2005 Code.Er

[復制鏈接]
樓主: 兇惡的老婦
31#
發(fā)表于 2025-3-27 00:59:05 | 只看該作者
10 List Decoding from ErasuresThe last two chapters presented a thorough investigation of the question of constructions of good codes, i.e. codes of high rate, which are list decodable from a very large, and essentially the “maximum” possible, fraction of errors.
32#
發(fā)表于 2025-3-27 03:00:54 | 只看該作者
33#
發(fā)表于 2025-3-27 08:17:05 | 只看該作者
34#
發(fā)表于 2025-3-27 11:01:09 | 只看該作者
12 Sample Applications Outside Coding TheoryWe now move on to provide a sample of some of the applications which both combinatorial and algorithmic aspects of list decoding have found in contexts outside of coding theory. As it turns out, by now there are numerous such applications to complexity theory and cryptography.
35#
發(fā)表于 2025-3-27 16:57:42 | 只看該作者
13 Concluding RemarksIn this work, we have addressed several fundamental questions concerning list decoding. We began in the first part with the study of certain combinatorial aspects of list decoding, and established lower and upper bounds on the number of errors correctable via list decoding, as a function of the rate and minimum distance of the code.
36#
發(fā)表于 2025-3-27 20:23:39 | 只看該作者
https://doi.org/10.1007/b104335Code; Error-correcting Code; Information; Shannon; algorithms; coding theory; complexity theory; concatenat
37#
發(fā)表于 2025-3-27 22:03:46 | 只看該作者
38#
發(fā)表于 2025-3-28 05:19:54 | 只看該作者
39#
發(fā)表于 2025-3-28 08:42:12 | 只看該作者
2 Preliminaries and Monograph Structure the fundamental code families and constructions that will be dealt with and used in this book. Finally, we discuss the structure of this work and the main results which are established in the technical chapters that follow, explaining in greater detail how the results of the various chapters fit together.
40#
發(fā)表于 2025-3-28 10:46:54 | 只看該作者
5 List Decodability Vs. Ratereater than d/2). On the other hand, we have seen that, in general, the list decoding radius (for polynomial-sized lists), purely as a function of the distance of the code, cannot be larger than the Johnson radius.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
措美县| 神池县| 上虞市| 诸城市| 大兴区| 宜章县| 晴隆县| 东城区| 龙口市| 通州市| 无锡市| 大埔区| 石嘴山市| 泽库县| 宁夏| 湖口县| 昔阳县| 惠水县| 青冈县| 凭祥市| 绥化市| 南澳县| 汾阳市| 定边县| 泰兴市| 巴南区| 新平| 林甸县| 日土县| 怀仁县| 龙游县| 威海市| 民乐县| 延寿县| 蓬溪县| 丹巴县| 襄樊市| 金华市| 娱乐| 库伦旗| 三江|