找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Liouville-Riemann-Roch Theorems on Abelian Coverings; Minh Kha,Peter Kuchment Book 2021 The Editor(s) (if applicable) and The Author(s), u

[復制鏈接]
查看: 55114|回復: 35
樓主
發(fā)表于 2025-3-21 16:16:33 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Liouville-Riemann-Roch Theorems on Abelian Coverings
編輯Minh Kha,Peter Kuchment
視頻videohttp://file.papertrans.cn/587/586827/586827.mp4
概述The first unified exposition of Liouville and Riemann–Roch type theorems for elliptic operators on abelian coverings.Gives a well-organized and self-contained exposition of the topic, including new re
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Liouville-Riemann-Roch Theorems on Abelian Coverings;  Minh Kha,Peter Kuchment Book 2021 The Editor(s) (if applicable) and The Author(s), u
描述This book is devoted to computing the index of elliptic PDEs on non-compact Riemannian manifolds in the presence of local singularities and zeros, as well as polynomial growth at infinity. The classical Riemann–Roch theorem and its generalizations to elliptic equations on bounded domains and compact manifolds, due to Maz’ya, Plameneskii, Nadirashvilli, Gromov and Shubin, account for the contribution to the index due to a divisor of zeros and singularities. On the other hand, the Liouville theorems of Avellaneda, Lin, Li, Moser, Struwe, Kuchment and Pinchover provide the index of periodic elliptic equations on abelian coverings of compact manifolds with polynomial growth at infinity, i.e. in the presence of a "divisor" at infinity..A natural question is whether one can combine the Riemann–Roch and Liouville type results. This monograph shows that this can indeed be done, however the answers are more intricate than one might initially expect. Namely, the interaction between the finite divisor and the point at infinity is non-trivial..The text is targeted towards researchers in PDEs, geometric analysis, and mathematical physics..
出版日期Book 2021
關鍵詞Abelian Covering; Elliptic Operator; Index Formula; Liouville Theorem; Partial Differential Equations; Pe
版次1
doihttps://doi.org/10.1007/978-3-030-67428-1
isbn_softcover978-3-030-67427-4
isbn_ebook978-3-030-67428-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Liouville-Riemann-Roch Theorems on Abelian Coverings影響因子(影響力)




書目名稱Liouville-Riemann-Roch Theorems on Abelian Coverings影響因子(影響力)學科排名




書目名稱Liouville-Riemann-Roch Theorems on Abelian Coverings網絡公開度




書目名稱Liouville-Riemann-Roch Theorems on Abelian Coverings網絡公開度學科排名




書目名稱Liouville-Riemann-Roch Theorems on Abelian Coverings被引頻次




書目名稱Liouville-Riemann-Roch Theorems on Abelian Coverings被引頻次學科排名




書目名稱Liouville-Riemann-Roch Theorems on Abelian Coverings年度引用




書目名稱Liouville-Riemann-Roch Theorems on Abelian Coverings年度引用學科排名




書目名稱Liouville-Riemann-Roch Theorems on Abelian Coverings讀者反饋




書目名稱Liouville-Riemann-Roch Theorems on Abelian Coverings讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:16:15 | 只看該作者
Book 2021rs are more intricate than one might initially expect. Namely, the interaction between the finite divisor and the point at infinity is non-trivial..The text is targeted towards researchers in PDEs, geometric analysis, and mathematical physics..
板凳
發(fā)表于 2025-3-22 00:23:45 | 只看該作者
地板
發(fā)表于 2025-3-22 07:08:51 | 只看該作者
Liouville-Riemann-Roch Theorems on Abelian Coverings
5#
發(fā)表于 2025-3-22 12:42:01 | 只看該作者
6#
發(fā)表于 2025-3-22 14:27:49 | 只看該作者
The Main Results,, the Riemann-Roch type equalities cannot be achieved (counterexamples are shown), while inequalities still hold. These inequalities, however, can be applied, the same way the equalities are, for proving the existence of solutions of elliptic equations with prescribed zeros, poles, and growth at inf
7#
發(fā)表于 2025-3-22 20:41:20 | 只看該作者
ie betriebliche Finanzwirtschaft. Einfach und verst?ndlich werden die grundlegenden Instrumente und Zusammenh?ngedes Investitions und Finanzierungsbereichs aufgezeigt, analy siert und erkl?rt. Schwerpunkte sind die finanzwirtschaftlichen Ziele, Methoden der Investitionsrechnung, Instrumente der Kapi
8#
發(fā)表于 2025-3-22 22:47:12 | 只看該作者
Preliminaries,e type theorems (for .?=?.) due to works by Avellaneda and Lin, Moser and Struwe, and Kuchment and Pinchover, as well as their generalizations for .?≠?. are presented. Also, the results and some techniques of Nadirashvili and Gromov and Shubin on versions of Riemann-Roch theorem for elliptic operators are described.
9#
發(fā)表于 2025-3-23 01:33:58 | 只看該作者
10#
發(fā)表于 2025-3-23 07:37:33 | 只看該作者
0075-8434 and self-contained exposition of the topic, including new reThis book is devoted to computing the index of elliptic PDEs on non-compact Riemannian manifolds in the presence of local singularities and zeros, as well as polynomial growth at infinity. The classical Riemann–Roch theorem and its generali
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 10:43
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
林周县| 原阳县| 建始县| 五指山市| 章丘市| 台中市| 清镇市| 沽源县| 连平县| 青神县| 昂仁县| 台北市| 平果县| 乌什县| 博乐市| 元朗区| 志丹县| 图片| 平安县| 会理县| 建宁县| 波密县| 武宁县| 宜君县| 买车| 南丹县| 大方县| 安仁县| 西乡县| 淄博市| 岗巴县| 嵊州市| 寿阳县| 无为县| 沅江市| 贵定县| 八宿县| 武安市| 丰宁| 永靖县| 清流县|