找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lineare Algebra: Eine anwendungsorientierte Einführung; Mathematische Grundl Andreas Müller Textbook 2023 Der/die Herausgeber bzw. der/die

[復(fù)制鏈接]
樓主: melancholy
31#
發(fā)表于 2025-3-27 01:00:19 | 只看該作者
32#
發(fā)表于 2025-3-27 03:01:10 | 只看該作者
33#
發(fā)表于 2025-3-27 05:41:12 | 只看該作者
,Skalarprodukt und Orthogonalit?t,dukt erhaltende Transformationen mit sogenannten orthogonalen Matrizen beschreiben. Der Drehwinkel einer Drehmatrix kann mit Hilfe der Spur mit einer einfachen Formel berechnet werden. Das Skalarprodukt ist auch die Grundlage der wichtigen Methode der kleinsten Quadrate.
34#
發(fā)表于 2025-3-27 11:53:22 | 只看該作者
35#
發(fā)表于 2025-3-27 16:28:40 | 只看該作者
36#
發(fā)表于 2025-3-27 20:22:05 | 只看該作者
Determinante,e aber auch rekursiv mit dem Entwicklungssatz bestimmt werden. Die algebraischen Eigenschaften der Determinante erm?glichen sogar, eine L?sungsformel für die L?sung eines linearen Gleichungssystems zu finden.
37#
發(fā)表于 2025-3-27 22:35:54 | 只看該作者
Polynome,t bestehender Software für lineare Gleichungssysteme ausführen. Polynome k?nnen aber auch durch Matrizen beschrieben werden. Dies erm?glicht, Eigenschaften von Matrizen in Eigenschaften von Polynomen zu übersetzen.
38#
發(fā)表于 2025-3-28 05:32:12 | 只看該作者
39#
發(fā)表于 2025-3-28 09:43:10 | 只看該作者
,Fl?cheninhalt, Volumen und Orientierung,n zu finden. Die Rodrigues-Formel drückt Drehungen des dreidimensionalen Raumes mit Vektoroperationen aus. Die Algebra der Vektoren mit dem Vektorprodukt ist eine sogenannte Lie-Algebra, eine Struktur, die auch die Matrizenalgebra tr?gt. Drehmatrizen lassen sich damit auch durch einen einzigen Vektor beschreiben.
40#
發(fā)表于 2025-3-28 13:05:01 | 只看該作者
ch-intuitiven und visuellen Zugang zu weiterführenden Konzep.Dieses Lehrbuch entwickelt die Konzepte und Werkzeuge der linearen Algebra zusammen mit anspruchsvollen und praxisrelevanten Anwendungen aus dem Ingenieurswesen. Dabei stellt es die Theorie soweit exakt dar, dass eine tragf?hige Grundlage
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴林右旗| 武川县| 淳化县| 恩平市| 会同县| 中阳县| 武鸣县| 吴旗县| 彭阳县| 巴彦县| 霸州市| 龙井市| 崇州市| 陆良县| 洪江市| 睢宁县| 仙居县| 大石桥市| 左云县| 贺兰县| 咸阳市| 长寿区| 开远市| 保康县| 镇赉县| 渝中区| 康平县| 连南| 江北区| 涞源县| 茂名市| 咸阳市| 阿坝| 洮南市| 万山特区| 广东省| 河北省| 浦城县| 特克斯县| 樟树市| 班戈县|