找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lineare Algebra; Eine Einführung in d Albrecht Beutelspacher Book 1994 Springer Fachmedien Wiesbaden 1994 Algebra.Determinanten.Matrizen.Sk

[復(fù)制鏈接]
查看: 43749|回復(fù): 47
樓主
發(fā)表于 2025-3-21 19:59:57 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Lineare Algebra
副標(biāo)題Eine Einführung in d
編輯Albrecht Beutelspacher
視頻videohttp://file.papertrans.cn/587/586511/586511.mp4
叢書名稱Mathematik für Studienanf?nger
圖書封面Titlebook: Lineare Algebra; Eine Einführung in d Albrecht Beutelspacher Book 1994 Springer Fachmedien Wiesbaden 1994 Algebra.Determinanten.Matrizen.Sk
出版日期Book 1994
關(guān)鍵詞Algebra; Determinanten; Matrizen; Skalarprodukt; Vektoren; Vektorr?ume; lineare Abbildung; lineare Algebra;
版次1
doihttps://doi.org/10.1007/978-3-322-89448-9
isbn_softcover978-3-528-06508-9
isbn_ebook978-3-322-89448-9
copyrightSpringer Fachmedien Wiesbaden 1994
The information of publication is updating

書目名稱Lineare Algebra影響因子(影響力)




書目名稱Lineare Algebra影響因子(影響力)學(xué)科排名




書目名稱Lineare Algebra網(wǎng)絡(luò)公開度




書目名稱Lineare Algebra網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Lineare Algebra被引頻次




書目名稱Lineare Algebra被引頻次學(xué)科排名




書目名稱Lineare Algebra年度引用




書目名稱Lineare Algebra年度引用學(xué)科排名




書目名稱Lineare Algebra讀者反饋




書目名稱Lineare Algebra讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:09:26 | 只看該作者
https://doi.org/10.1007/978-3-322-89448-9Algebra; Determinanten; Matrizen; Skalarprodukt; Vektoren; Vektorr?ume; lineare Abbildung; lineare Algebra;
板凳
發(fā)表于 2025-3-22 01:13:19 | 只看該作者
地板
發(fā)表于 2025-3-22 05:09:26 | 只看該作者
,Anwendungen von Vektorr?umen,In diesem Kapitel behandeln wir drei wichtige Anwendungen der bisher entwickelten Vektorraumtheorie. Diese Anwendungen scheinen sehr verschieden zu sein. Wenn man aber genauer hinschaut, erkennt man, da? sie zum Teil sogar eng zusammenh?ngen.
5#
發(fā)表于 2025-3-22 09:32:15 | 只看該作者
Lineare Abbildungen,Bei jeder mathematischen Struktur ist es ?u?erst wichtig, die strukturerhaltenden Abbildungen, die sogenannten Homomorphismen, zu studieren. Dies hat folgende Gründe:
6#
發(fā)表于 2025-3-22 15:17:51 | 只看該作者
Diagonalisierbarkeit,In Kapitel 5 haben wir gesehen, da? sich jede lineare Abbildung eines Vektorraums V in einen Vektorraum W durch eine Matrix darstellen l??t. Diese Darstellungsmatrix h?ngt von der Auswahl einer Basis von V und einer Basis von W ab.
7#
發(fā)表于 2025-3-22 17:42:48 | 只看該作者
8#
發(fā)表于 2025-3-23 00:55:19 | 只看該作者
978-3-528-06508-9Springer Fachmedien Wiesbaden 1994
9#
發(fā)表于 2025-3-23 02:46:53 | 只看該作者
Overview: 978-3-528-06508-9978-3-322-89448-9
10#
發(fā)表于 2025-3-23 08:41:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 00:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
保定市| 保德县| 永川市| 湘潭县| 隆子县| 曲靖市| 会同县| 玉环县| 清水河县| 修武县| 韶关市| 锦州市| 巴彦淖尔市| 云霄县| 秦皇岛市| 嘉禾县| 桦甸市| 平安县| 昭通市| 蓬莱市| 五原县| 海盐县| 达拉特旗| 车致| 平潭县| SHOW| 东乡| 芦溪县| 临洮县| 鄂伦春自治旗| 治多县| 郸城县| 尼玛县| 大英县| 邢台市| 韶关市| 高青县| 北碚区| 甘谷县| 兴城市| 建宁县|