找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Representations of Finite Groups; Jean-Pierre Serre Textbook 1977 Springer Science+Business Media New York 1977 Darstellung (Math.

[復(fù)制鏈接]
樓主: TOUT
11#
發(fā)表于 2025-3-23 12:08:43 | 只看該作者
12#
發(fā)表于 2025-3-23 16:44:42 | 只看該作者
13#
發(fā)表于 2025-3-23 21:48:25 | 只看該作者
14#
發(fā)表于 2025-3-24 01:09:23 | 只看該作者
Generalities on linear representations linear mapping of V into V which has an inverse a.; this inverse is linear. When V has a finite basis (.) of n elements, each linear map .: V → V is defined by a square matrix (.) of order .. The coefficients . are complex numbers; they are obtained by expressing the images .(.) in terms of the basis (.):
15#
發(fā)表于 2025-3-24 04:02:52 | 只看該作者
Artin’s theoremombination of the .’s with non-negative integer coefficients. We will denote by R. (G) the set of these functions, and by R(G) the group generated by R.(G), i.e., the set of differences of two characters. We have
16#
發(fā)表于 2025-3-24 07:28:04 | 只看該作者
Rationality questions: examplesbers, and let .(.) be the field obtained by adjoining the .th roots of unity to .. The Galois group of .(.) over . is the group denoted Γ. in 12.4; it is a subgroup of the group (./.)*. In fact:. (Gauss). . Γ. = (./m.)*.
17#
發(fā)表于 2025-3-24 12:33:14 | 只看該作者
https://doi.org/10.1007/978-1-4684-9458-7Darstellung (Math; ); Endliche Gruppe; Finite; algebra; character theory; mathematics; proof; theorem
18#
發(fā)表于 2025-3-24 15:25:54 | 只看該作者
19#
發(fā)表于 2025-3-24 22:01:23 | 只看該作者
20#
發(fā)表于 2025-3-25 02:30:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黎城县| 金阳县| 宽甸| 溆浦县| 尼木县| 阳江市| 兴和县| 雅安市| 鞍山市| 怀柔区| 福泉市| 隆尧县| 买车| 甘肃省| 都匀市| 潼关县| 宁海县| 班玛县| 鸡泽县| 祁门县| 宜城市| 梧州市| 河池市| 嘉义市| 肥乡县| 柯坪县| 江城| 大化| 东丽区| 武清区| 建昌县| 灵寿县| 和田县| 镇雄县| 湛江市| 沐川县| 丰顺县| 临沧市| 桦南县| 丰台区| 介休市|