找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Operators in Function Spaces; 12th International C H. Helson,B. Sz.-Nagy,Gr. Arsene Book 1990 Birkh?user Verlag Basel 1990 C*-algebr

[復(fù)制鏈接]
樓主: amateur
21#
發(fā)表于 2025-3-25 04:50:54 | 只看該作者
22#
發(fā)表于 2025-3-25 10:04:04 | 只看該作者
23#
發(fā)表于 2025-3-25 11:41:36 | 只看該作者
A Note on Perturbations of Selfadjoint Operators in Krein Spaces,ifference of the resolvents of A and B belong to some Schatten-von Neumann ideal S., 1 ≤p < ∞, of compact operators in . ([3]). If, in addition, A is fundamentally reducible ([1]), then B possesses a spectral function with singularities and the set S of the spectral singularities of B has no more th
24#
發(fā)表于 2025-3-25 18:55:42 | 只看該作者
Projective Representations of Compact Groups in C*-Algebras,old, and studied some of its geometrical properties. This space, called the Grassmann manifold of A, has a simple alternative description. There is a bijective correspondence from . to the set of all unitary representations of the cyclic group ./2 in A. More precisely, each hermitian idempotent e in
25#
發(fā)表于 2025-3-25 23:59:45 | 只看該作者
Wiener-Hopf Operators on the Positive Semigroup of a Heisenberg Group,mpression in the general context of a locally compact group, with [0, ∞) replaced by a semigroup which is the closure of its interior. The most often considered examples of generalized Wiener-Hopf operators obtained in this manner are the Euclidean ones, where the group is R. and the compression is
26#
發(fā)表于 2025-3-26 00:12:05 | 只看該作者
27#
發(fā)表于 2025-3-26 07:12:57 | 只看該作者
28#
發(fā)表于 2025-3-26 11:24:08 | 只看該作者
29#
發(fā)表于 2025-3-26 15:22:50 | 只看該作者
D. Z. Arovent from a business point of view, using Microsoft bot technology, and demonstrates how to connect, deploy, and manage them..Starting with an introduction to chatbots and their features you will go through the design and implementation of Azure chatbots. This will set the foundation for the rest of
30#
發(fā)表于 2025-3-26 18:33:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东城区| 新晃| 林州市| 文登市| 右玉县| 甘肃省| 喀喇沁旗| 北辰区| 广西| 册亨县| 红安县| 麻城市| 汉沽区| 岳池县| 江孜县| 黔江区| 新宁县| 芜湖县| 绥滨县| 广宗县| 遂溪县| 扎兰屯市| 工布江达县| 康乐县| 南溪县| 含山县| 石家庄市| 夏河县| 兖州市| 齐齐哈尔市| 沙田区| 比如县| 无为县| 潜山县| 尉氏县| 高州市| 金华市| 鹤山市| 峡江县| 信阳市| 成都市|