找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Operators and Matrices; The Peter Lancaster I. Gohberg,H. Langer Conference proceedings 2002 Springer Basel AG 2002 Operator theory

[復(fù)制鏈接]
樓主: HIV763
61#
發(fā)表于 2025-4-1 02:27:12 | 只看該作者
Invariant Subspaces of Infinite Dimensional Hamiltonians and Solutions of the Corresponding RiccatiWe consider an infinite dimensional algebraic Riccati equation which arises in systems theory. Using a dichotomy property of the corresponding Hamiltonian and results on invariant subspaces of operators in spaces with an indefinite inner product we show the existence of bounded and unbounded solutions of this Riccati equation.
62#
發(fā)表于 2025-4-1 06:10:57 | 只看該作者
63#
發(fā)表于 2025-4-1 12:35:33 | 只看該作者
Peter Lancaster, my Friend and Co-author,turn Heinz told us about the work of Peter, about his book on vibrations of systems and about his personality. He also brought the book to Odessa and Peter’s results were often quoted in the seminars and discussions, and very soon Peter became popular in Odessa.
64#
發(fā)表于 2025-4-1 17:05:04 | 只看該作者
Logarithmic Residues of Fredholm Operator Valued Functions and Sums of Finite Rank Projections,k bounded linear operators can be written as the left and right logarithmic residues of a single Fredholm operator valued function if and only if they belong to the same connected component, i.e., if and only if they are sums of finite rank projections having the same trace.
65#
發(fā)表于 2025-4-1 18:48:42 | 只看該作者
Finite Section Method for Difference Equations,e-variant and the time-invariant case are considered. For the time-invariant case the condition reduces to the requirement that two subspaces defined in terms of the equations should be complementary. The results obtained extend those derived earlier for linear ordinary differential equations.
66#
發(fā)表于 2025-4-2 02:37:27 | 只看該作者
67#
發(fā)表于 2025-4-2 04:07:56 | 只看該作者
0255-0156 by a group of participants to honour Peter Lancaster on the occasion of his 70th birthday with a volume in the series ‘Operator Theory: Advances and Applications‘. Friends and colleagues responded enthusiastically to this proposal and within a short time we put together the volume which is now prese
68#
發(fā)表于 2025-4-2 08:46:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 06:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盈江县| 蕉岭县| 定南县| 乾安县| 津南区| 黄石市| 宁安市| 靖安县| 修水县| 兴宁市| 修武县| 海阳市| 霍邱县| 无极县| 河北区| 佛学| 盐山县| 柳江县| 临澧县| 五台县| 巴林左旗| 江西省| 准格尔旗| 绵阳市| 阿拉善盟| 珠海市| 敖汉旗| 湖南省| 曲靖市| 锦州市| 安福县| 贵港市| 东丽区| 永丰县| 探索| 双鸭山市| 甘南县| 临安市| 眉山市| 屏南县| 南京市|