找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Integral Equations; Rainer Kress Textbook 19891st edition Springer-Verlag Berlin Heidelberg 1989 Hilbert space.Integral calculus.In

[復制鏈接]
樓主: 類屬
51#
發(fā)表于 2025-3-30 08:33:16 | 只看該作者
52#
發(fā)表于 2025-3-30 14:53:20 | 只看該作者
Iterative Solution and Stability,lving linear systems obtained by discretizing operator equations based on the principal idea of the residual correction. In addition, at the end of this chapter we will briefly enter into the question of stability of the linear systems arising in the discretization of integral equations.
53#
發(fā)表于 2025-3-30 16:53:07 | 只看該作者
0066-5452 l beauty. This book will try to stimulate the reader to share this love with me. Having taught integral equations a number of times I felt a lack of a text which adequately combines theory, applications and numerical methods. Therefore, in this book I intend to cover each of these fields with the sa
54#
發(fā)表于 2025-3-30 23:56:21 | 只看該作者
55#
發(fā)表于 2025-3-31 03:25:11 | 只看該作者
Singular Integral Equations,tegral equations they will provide an application of the general idea of regularizing singular operators as described in Chapter 5. We assume that the reader is acquainted with the basic theory of complex functions.
56#
發(fā)表于 2025-3-31 05:49:24 | 只看該作者
The Heat Equation,ifferential equation. In this chapter we want to indicate the application of Volterra type integral equations for the solution of initial boundary value problems for the heat equation. Without loss of generality we assume the constant κ = 1.
57#
發(fā)表于 2025-3-31 11:35:18 | 只看該作者
58#
發(fā)表于 2025-3-31 14:53:25 | 只看該作者
Springer-Verlag Berlin Heidelberg 1989
59#
發(fā)表于 2025-3-31 18:18:32 | 只看該作者
60#
發(fā)表于 2025-3-31 23:56:11 | 只看該作者
Regularization in Dual Systems,strate that it is still possible to obtain results on the solvability of singular equations provided they can be regularized, that is, they can be transformed into equations of the second kind with a compact operator.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 09:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
金昌市| 德保县| 乐平市| 泰和县| 安达市| 什邡市| 大足县| 郎溪县| 新巴尔虎右旗| 延吉市| 海南省| 哈巴河县| 安图县| 德安县| 泗水县| 莫力| 临颍县| 南皮县| 原平市| 增城市| 周口市| 高密市| 金湖县| 广南县| 宁城县| 临桂县| 卢龙县| 金寨县| 莫力| 黑水县| 兴和县| 德州市| 白朗县| 沽源县| 三明市| 临湘市| 盐源县| 叶城县| 芮城县| 高邑县| 五大连池市|