找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Integral Equations; Rainer Kress Textbook 19891st edition Springer-Verlag Berlin Heidelberg 1989 Hilbert space.Integral calculus.In

[復(fù)制鏈接]
查看: 36513|回復(fù): 59
樓主
發(fā)表于 2025-3-21 17:01:37 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Linear Integral Equations
編輯Rainer Kress
視頻videohttp://file.papertrans.cn/587/586328/586328.mp4
叢書名稱Applied Mathematical Sciences
圖書封面Titlebook: Linear Integral Equations;  Rainer Kress Textbook 19891st edition Springer-Verlag Berlin Heidelberg 1989 Hilbert space.Integral calculus.In
描述I fell in love with integral equations about twenty years ago when I was working on my thesis, and I am still attracted by their mathematical beauty. This book will try to stimulate the reader to share this love with me. Having taught integral equations a number of times I felt a lack of a text which adequately combines theory, applications and numerical methods. Therefore, in this book I intend to cover each of these fields with the same weight. The first part provides the basic Riesz-Fredholm theory for equa- tions of the second kind with compact opertors in dual systems including all functional analytic concepts necessary for developing this theory. The second part then illustrates the classical applications of integral equation methods to boundary value problems for the Laplace and the heat equation as one of the main historical sources for the development of integral equations, and also in- troduces Cauchy type singular integral equations. The third part is devoted to describing the fundamental ideas for the numerical solution of integral equa- tions. Finally, in a fourth part, ill-posed integral equations of the first kind and their regularization are studied in a Hilbert spa
出版日期Textbook 19891st edition
關(guān)鍵詞Hilbert space; Integral calculus; Integral equation; Riesz-Fredholm theory; calculus; differential equati
版次1
doihttps://doi.org/10.1007/978-3-642-97146-4
isbn_ebook978-3-642-97146-4Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer-Verlag Berlin Heidelberg 1989
The information of publication is updating

書目名稱Linear Integral Equations影響因子(影響力)




書目名稱Linear Integral Equations影響因子(影響力)學(xué)科排名




書目名稱Linear Integral Equations網(wǎng)絡(luò)公開度




書目名稱Linear Integral Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Linear Integral Equations被引頻次




書目名稱Linear Integral Equations被引頻次學(xué)科排名




書目名稱Linear Integral Equations年度引用




書目名稱Linear Integral Equations年度引用學(xué)科排名




書目名稱Linear Integral Equations讀者反饋




書目名稱Linear Integral Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:28:01 | 只看該作者
0066-5452 olution of integral equa- tions. Finally, in a fourth part, ill-posed integral equations of the first kind and their regularization are studied in a Hilbert spa978-3-642-97146-4Series ISSN 0066-5452 Series E-ISSN 2196-968X
板凳
發(fā)表于 2025-3-22 04:26:12 | 只看該作者
地板
發(fā)表于 2025-3-22 06:30:27 | 只看該作者
5#
發(fā)表于 2025-3-22 11:12:47 | 只看該作者
6#
發(fā)表于 2025-3-22 15:52:55 | 只看該作者
7#
發(fā)表于 2025-3-22 19:16:44 | 只看該作者
Rainer Kressowing ICSI are presented, and intracytoplasmic morphologically selected sperm injection (IMSI) is discussed in detail in a chapter of its own..Bringing together the latest evidence and written by international leaders in the field, .Intracytoplasmic Sperm Injection: Indications, Techniques and Appli
8#
發(fā)表于 2025-3-22 22:34:20 | 只看該作者
9#
發(fā)表于 2025-3-23 04:48:07 | 只看該作者
10#
發(fā)表于 2025-3-23 06:53:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武陟县| 榕江县| 梁平县| 张北县| 鄂托克旗| 布拖县| 张家港市| 页游| 安庆市| 怀化市| 沐川县| 柞水县| 滦南县| 乌审旗| 辽中县| 二连浩特市| 旅游| 西畴县| 翁源县| 双流县| 赤壁市| 田东县| 雷州市| 阿拉善左旗| 扶余县| 玉溪市| 茂名市| 张北县| 罗山县| 葫芦岛市| 皋兰县| 廊坊市| 宝丰县| 乌恰县| 酒泉市| 永和县| 广丰县| 奈曼旗| 睢宁县| 平武县| 禹州市|