找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Genetic Programming; Markus F. Brameier,Wolfgang Banzhaf Book 2007 Springer-Verlag US 2007 Step Size Control.Syntax.algorithms.code

[復(fù)制鏈接]
樓主: 不友善
41#
發(fā)表于 2025-3-28 18:12:34 | 只看該作者
42#
發(fā)表于 2025-3-28 19:59:57 | 只看該作者
43#
發(fā)表于 2025-3-29 02:47:30 | 只看該作者
A Comparison with Neural Networks to RPROP neural networks with respect to the generalization performance..The runtime performance of genetic programming becomes especially important for time-critical applications or when operating with large data sets from real-world domains like medicine. Two techniques were presented that reduce
44#
發(fā)表于 2025-3-29 07:08:42 | 只看該作者
Linear Genetic Operators I — Segment Variations crossover and mutation operators for the linear program representation and compare their influence on prediction performance and the complexity of evolved solutions..We can distinguish between two different levels of variation done by these operators. . operate on the instruction level (or .). In t
45#
發(fā)表于 2025-3-29 07:49:07 | 只看該作者
Linear Genetic Operators II — Instruction Mutationslatively low limit to segment length. Second, segment recombination has not been found to be more powerful than segment mutation. Both aspects motivate the use of mutations that affect . instruction only. The following considerations try to point out why linear programs in particular are likely to b
46#
發(fā)表于 2025-3-29 12:58:09 | 只看該作者
Analysis of Control Parametersuences of more general system parameters that are relevant in linear genetic programming. In particular, the number of registers, the number of constants, the population size, and the maximum program length will be studied. Additionally, we compare different initialization techniques for linear gene
47#
發(fā)表于 2025-3-29 16:59:01 | 只看該作者
48#
發(fā)表于 2025-3-29 20:05:37 | 只看該作者
Control of Diversity and Variation Step Sizeypes and of phenotypes form a necessary condition for being able to control differences between genetic programs. The two objectives of this chapter are to show [1] how distance information between individuals can be used to control structural diversity of individuals and [2] how variation distance
49#
發(fā)表于 2025-3-30 03:31:06 | 只看該作者
Code Growth and Neutral Variationsfor the growth of code in GP runs. Other existing theories about code growth are verified for linear GP and are partly reevaluated from a different perspective..In evolutionary computation neutral variations are argued to explore flat regions of the fitness landscape while non-neutral variations exp
50#
發(fā)表于 2025-3-30 07:00:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 15:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
射洪县| 奉贤区| 皋兰县| 开封市| 姜堰市| 赤峰市| 萝北县| 靖宇县| 大悟县| 广宗县| 天等县| 德安县| 黎城县| 娄烦县| 德格县| 调兵山市| 泗洪县| 安顺市| 福州市| 河北区| 昌邑市| 嘉鱼县| 奇台县| 新竹县| 宣恩县| 通化县| 孝昌县| 宣汉县| 利津县| 资源县| 高阳县| 泰兴市| 玉环县| 仁化县| 昭通市| 库车县| 鹿泉市| 海淀区| 潮安县| 萨嘎县| 海原县|