找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Functional Analysis; An Application-Orien Hans Wilhelm Alt Textbook 2016 Springer-Verlag London 2016 Banach Space.Hilbert Space.Func

[復(fù)制鏈接]
樓主: stripper
11#
發(fā)表于 2025-3-23 11:42:53 | 只看該作者
12#
發(fā)表于 2025-3-23 15:58:45 | 只看該作者
Self-adjoint operators,First we prove some fundamental results for the adjoint map (see 12.1–12.6) and then present a version of the spectral theorem 11.9 for compact normal operators (theorem 12.12). Here we employ the notation x, x’! = x, x’! X = x’(x) from 7.4. We remark that the adjoint map of an operator has already been defined in 5.5(8).
13#
發(fā)表于 2025-3-23 20:02:51 | 只看該作者
Introduction,ysis, in particular, is confined to the analysis of linear mappings of this kind. Its development was based on the fundamental observation that the topological concepts of the Euclidean space ?. can be generalized to function spaces as well.
14#
發(fā)表于 2025-3-24 02:08:29 | 只看該作者
Finite-dimensional approximation,nts in such subspaces as approximations of elements in the entire Banach space X. Clearly we require the approximating subspaces to be finite-dimensional, because in numerical computations only a prescribed finite number of coordinates can be stored.
15#
發(fā)表于 2025-3-24 05:54:58 | 只看該作者
Hans Wilhelm AltA complete, self-contained introduction to linear functional analysis.Includes topics such as operator theory, distributions, Sobolev spaces.Features many solved exercises
16#
發(fā)表于 2025-3-24 08:21:22 | 只看該作者
17#
發(fā)表于 2025-3-24 11:00:18 | 只看該作者
Introduction,ysis, in particular, is confined to the analysis of linear mappings of this kind. Its development was based on the fundamental observation that the topological concepts of the Euclidean space ?. can be generalized to function spaces as well.
18#
發(fā)表于 2025-3-24 18:41:04 | 只看該作者
19#
發(fā)表于 2025-3-24 21:03:18 | 只看該作者
20#
發(fā)表于 2025-3-25 03:05:20 | 只看該作者
e demanded much less of us bibliographically than is the case today, tend to be concerned over our younger colleagues. As we observe those working in the field of intracranial pressure, elaborately equipped with multiple strain gauges, amplifiers, radioisotopic tracers and other implements — and the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尤溪县| 台江县| 南宫市| 玉溪市| 常熟市| 聂荣县| 武强县| 教育| 清原| 文昌市| 名山县| 民县| 江华| 汝南县| 平潭县| 金昌市| 阆中市| 盱眙县| 平利县| 婺源县| 九龙县| 香河县| 武威市| 云霄县| 年辖:市辖区| 西昌市| 应用必备| 米泉市| 永定县| 博罗县| 广河县| 陵川县| 明溪县| 河南省| 湖南省| 锦屏县| 祁连县| 松滋市| 安仁县| 南江县| 从化市|