找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Fractional Transformations; An Illustrated Intro Arseniy Sheydvasser Textbook 2023 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
樓主: Prehypertension
11#
發(fā)表于 2025-3-23 09:53:10 | 只看該作者
https://doi.org/10.1007/978-3-031-25002-6Linear fractional transformations; M?bius transformations; Conformal geometry; Inversive geometry; Eucli
12#
發(fā)表于 2025-3-23 16:56:10 | 只看該作者
Applications of Inversive Geometry,metries. Now is a good time to make good on this promise: we are going to see how convenient inversive geometry is when attacking various problems that would have given the ancient Greeks and later geometers trouble.
13#
發(fā)表于 2025-3-23 19:28:37 | 只看該作者
Construction of Hyperbolic Geometry, possible candidates for exposition but probably the single most important is hyperbolic space. The hyperbolic plane was the original example of a non-Euclidean space—that is, a geometry that satisfied all of Euclid’s axioms for plane geometry save for what is now known as the Fifth Postulate.
14#
發(fā)表于 2025-3-24 00:03:07 | 只看該作者
Arseniy SheydvasserHighly visual and beautifully illustrated.Exercises are organized into sections pertaining to various topics.Assumed little mathematical knowledge
15#
發(fā)表于 2025-3-24 03:29:42 | 只看該作者
16#
發(fā)表于 2025-3-24 07:58:39 | 只看該作者
17#
發(fā)表于 2025-3-24 14:39:21 | 只看該作者
Linear Fractional Transformations978-3-031-25002-6Series ISSN 0172-6056 Series E-ISSN 2197-5604
18#
發(fā)表于 2025-3-24 14:50:40 | 只看該作者
19#
發(fā)表于 2025-3-24 23:05:12 | 只看該作者
20#
發(fā)表于 2025-3-25 00:39:22 | 只看該作者
Ludovic Lebartver, emergence of information systems of that complexity calls for new methodologies in software engineering that take a holistic view of the systems and their embedding in our social and natural fabric. In fact, the metaphor of information ecologies gives us the language and concepts with which to
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通海县| 汝阳县| 平南县| 农安县| 娄烦县| 虹口区| 白朗县| 老河口市| 淮滨县| 定远县| 资中县| 镇江市| 东阿县| 禄丰县| 周口市| 阜康市| 双桥区| 松溪县| 拜泉县| 江口县| 桃江县| 左云县| 万宁市| 凌源市| 临西县| 曲靖市| 万全县| 昭苏县| 乌兰察布市| 洛阳市| 南宫市| 霍山县| 邵阳市| 邻水| 礼泉县| 清苑县| 六枝特区| 鄂托克前旗| 汉寿县| 丰县| 永新县|