找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Fractional Transformations; An Illustrated Intro Arseniy Sheydvasser Textbook 2023 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
樓主: Prehypertension
11#
發(fā)表于 2025-3-23 09:53:10 | 只看該作者
https://doi.org/10.1007/978-3-031-25002-6Linear fractional transformations; M?bius transformations; Conformal geometry; Inversive geometry; Eucli
12#
發(fā)表于 2025-3-23 16:56:10 | 只看該作者
Applications of Inversive Geometry,metries. Now is a good time to make good on this promise: we are going to see how convenient inversive geometry is when attacking various problems that would have given the ancient Greeks and later geometers trouble.
13#
發(fā)表于 2025-3-23 19:28:37 | 只看該作者
Construction of Hyperbolic Geometry, possible candidates for exposition but probably the single most important is hyperbolic space. The hyperbolic plane was the original example of a non-Euclidean space—that is, a geometry that satisfied all of Euclid’s axioms for plane geometry save for what is now known as the Fifth Postulate.
14#
發(fā)表于 2025-3-24 00:03:07 | 只看該作者
Arseniy SheydvasserHighly visual and beautifully illustrated.Exercises are organized into sections pertaining to various topics.Assumed little mathematical knowledge
15#
發(fā)表于 2025-3-24 03:29:42 | 只看該作者
16#
發(fā)表于 2025-3-24 07:58:39 | 只看該作者
17#
發(fā)表于 2025-3-24 14:39:21 | 只看該作者
Linear Fractional Transformations978-3-031-25002-6Series ISSN 0172-6056 Series E-ISSN 2197-5604
18#
發(fā)表于 2025-3-24 14:50:40 | 只看該作者
19#
發(fā)表于 2025-3-24 23:05:12 | 只看該作者
20#
發(fā)表于 2025-3-25 00:39:22 | 只看該作者
Ludovic Lebartver, emergence of information systems of that complexity calls for new methodologies in software engineering that take a holistic view of the systems and their embedding in our social and natural fabric. In fact, the metaphor of information ecologies gives us the language and concepts with which to
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仆寺旗| 嘉黎县| 宜昌市| 日土县| 宜兴市| 高唐县| 友谊县| 杂多县| 元谋县| 农安县| 张掖市| 阜新市| 绥宁县| 谢通门县| 九龙城区| 平度市| 洛隆县| 哈密市| 香河县| 吉水县| 北海市| 阿图什市| 德兴市| 肥西县| 团风县| 琼海市| 子长县| 皋兰县| 文水县| 宁都县| 济源市| 望谟县| 礼泉县| 新和县| 靖江市| 滨海县| 布尔津县| 河北区| 芷江| 清镇市| 大新县|