找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations and Group Theory from Riemann to Poincare; Jeremy Gray Book 19861st edition Birkh?user Boston 1986 ordinary differe

[復(fù)制鏈接]
樓主: 呻吟
11#
發(fā)表于 2025-3-23 11:29:11 | 只看該作者
12#
發(fā)表于 2025-3-23 15:19:06 | 只看該作者
13#
發(fā)表于 2025-3-23 21:56:30 | 只看該作者
Algebraic Solutions to a Differential Equation,n the 1870’s and 1880’s. First, Schwarz solved the problem for the hypergeometric equation. Then Fuchs solved it for the general second-order equation by reducing it to a problem in invariant theory and solving that problem by . means. Gordan later solved the invariant theory problem directly. But F
14#
發(fā)表于 2025-3-24 02:16:41 | 只看該作者
15#
發(fā)表于 2025-3-24 06:21:43 | 只看該作者
Some Algebraic Curves,erent guises as: the 28 bi-tangents to a quartic curve, the study of a Riemann surface of genus 3 and its group of automorphisms, and the reduction of the modular equation of degree 8. These studies, which began separately, were drawn together by Klein in 1878 and proved crucial to his discovery of
16#
發(fā)表于 2025-3-24 06:51:41 | 只看該作者
Automorphic Functions,phic functions. These developments brought together the theory of linear differential equations and the group-theoretic approach to the study of Riemann surfaces, so this account draws on all of the preceding material. It begins with a significant stage intermediate between the embryonic general the
17#
發(fā)表于 2025-3-24 13:42:36 | 只看該作者
https://doi.org/10.1007/978-1-4899-6672-8ordinary differential equations
18#
發(fā)表于 2025-3-24 17:31:37 | 只看該作者
http://image.papertrans.cn/l/image/586303.jpg
19#
發(fā)表于 2025-3-24 21:01:45 | 只看該作者
20#
發(fā)表于 2025-3-24 23:14:46 | 只看該作者
Overview: 978-1-4899-6672-8
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉屏| 湟中县| 贡觉县| 武乡县| 颍上县| 泾源县| 肇州县| 远安县| 仪陇县| 沂源县| 依安县| 健康| 六安市| 广宁县| 陵川县| 成都市| 佛教| 永吉县| 红安县| 黄陵县| 介休市| 霍林郭勒市| 武山县| 上饶市| 镇雄县| 平江县| 广安市| 筠连县| 尼木县| 日土县| 康马县| 渭南市| 庆城县| 大渡口区| 科技| 化隆| 靖远县| 稻城县| 三穗县| 耒阳市| 许昌县|