找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Chaos; Karl-G. Grosse-Erdmann,Alfred Peris Manguillot Textbook 2011 Springer-Verlag London Limited 2011 Chaos.Dynamical systems.Hyp

[復制鏈接]
樓主: chondrocyte
41#
發(fā)表于 2025-3-28 18:40:23 | 只看該作者
42#
發(fā)表于 2025-3-28 19:59:08 | 只看該作者
43#
發(fā)表于 2025-3-28 23:49:36 | 只看該作者
44#
發(fā)表于 2025-3-29 04:46:08 | 只看該作者
45#
發(fā)表于 2025-3-29 07:51:41 | 只看該作者
Hypercyclic and chaotic operatorsis shown that every hypercyclic operator possesses a dense subspace all of whose nonzero vectors are hypercyclic (the Herrero–Bourdon theorem), and that linear dynamics can be as complicated as nonlinear dynamics. We begin the chapter with an introduction to Fréchet spaces since they provide the setting for some important chaotic operators.
46#
發(fā)表于 2025-3-29 13:33:38 | 只看該作者
Connectedness arguments in linear dynamics that every multi-hypercyclic operator is hypercyclic, the León–Müller theorem that any unimodular multiple of a hypercyclic operator is hypercyclic, and the Conejero–Müller–Peris theorem that every operator in a hypercyclic semigroup is hypercyclic.
47#
發(fā)表于 2025-3-29 16:56:02 | 只看該作者
Existence of hypercyclic operatorse set of hypercyclic operators in two ways: it forms a dense set in the space of all operators when endowed with the strong operator topology; and it is shown that any linearly independent sequence of vectors appears as the orbit under a hypercyclic operator.
48#
發(fā)表于 2025-3-29 23:42:49 | 只看該作者
49#
發(fā)表于 2025-3-30 01:38:40 | 只看該作者
Hypercyclic subspacese existence of hypercyclic subspaces. The first proof provides an explicit construction via basic sequences, the second one relies on the study of left-multiplication operators. We also obtain conditions that prevent the existence of hypercyclic subspaces; as an application we show that Rolewicz’s operators do not have hypercyclic subspaces.
50#
發(fā)表于 2025-3-30 07:03:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
句容市| 应用必备| 稻城县| 南宁市| 阳江市| 淮北市| 营口市| 察隅县| 道孚县| 三亚市| 双城市| 兰州市| 和龙市| 康平县| 萨迦县| 乌什县| 临夏市| 太和县| 盐边县| 乌拉特前旗| 吉林市| 衡南县| 城固县| 玉龙| 宁波市| 冷水江市| 新和县| 皋兰县| 榕江县| 平江县| 郑州市| 临沧市| 理塘县| 丰都县| 中江县| 孝感市| 西充县| 钦州市| 南澳县| 高安市| 泰宁县|