找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Chaos; Karl-G. Grosse-Erdmann,Alfred Peris Manguillot Textbook 2011 Springer-Verlag London Limited 2011 Chaos.Dynamical systems.Hyp

[復制鏈接]
樓主: chondrocyte
41#
發(fā)表于 2025-3-28 18:40:23 | 只看該作者
42#
發(fā)表于 2025-3-28 19:59:08 | 只看該作者
43#
發(fā)表于 2025-3-28 23:49:36 | 只看該作者
44#
發(fā)表于 2025-3-29 04:46:08 | 只看該作者
45#
發(fā)表于 2025-3-29 07:51:41 | 只看該作者
Hypercyclic and chaotic operatorsis shown that every hypercyclic operator possesses a dense subspace all of whose nonzero vectors are hypercyclic (the Herrero–Bourdon theorem), and that linear dynamics can be as complicated as nonlinear dynamics. We begin the chapter with an introduction to Fréchet spaces since they provide the setting for some important chaotic operators.
46#
發(fā)表于 2025-3-29 13:33:38 | 只看該作者
Connectedness arguments in linear dynamics that every multi-hypercyclic operator is hypercyclic, the León–Müller theorem that any unimodular multiple of a hypercyclic operator is hypercyclic, and the Conejero–Müller–Peris theorem that every operator in a hypercyclic semigroup is hypercyclic.
47#
發(fā)表于 2025-3-29 16:56:02 | 只看該作者
Existence of hypercyclic operatorse set of hypercyclic operators in two ways: it forms a dense set in the space of all operators when endowed with the strong operator topology; and it is shown that any linearly independent sequence of vectors appears as the orbit under a hypercyclic operator.
48#
發(fā)表于 2025-3-29 23:42:49 | 只看該作者
49#
發(fā)表于 2025-3-30 01:38:40 | 只看該作者
Hypercyclic subspacese existence of hypercyclic subspaces. The first proof provides an explicit construction via basic sequences, the second one relies on the study of left-multiplication operators. We also obtain conditions that prevent the existence of hypercyclic subspaces; as an application we show that Rolewicz’s operators do not have hypercyclic subspaces.
50#
發(fā)表于 2025-3-30 07:03:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
班戈县| 莱阳市| 十堰市| 大余县| 河曲县| 温宿县| 高阳县| 甘孜| 五莲县| 法库县| 岑溪市| 平凉市| 临朐县| 阳东县| 新宾| 普陀区| 宜都市| 吴忠市| 九台市| 山东省| 南投县| 娄烦县| 清新县| 普陀区| 清河县| 本溪| 县级市| 油尖旺区| 福建省| 鲁山县| 肇庆市| 莱西市| 兴安盟| 海兴县| 新民市| 治县。| 太和县| 富民县| 清徐县| 天门市| 沈阳市|