找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Chaos; Karl-G. Grosse-Erdmann,Alfred Peris Manguillot Textbook 2011 Springer-Verlag London Limited 2011 Chaos.Dynamical systems.Hyp

[復(fù)制鏈接]
樓主: chondrocyte
21#
發(fā)表于 2025-3-25 06:57:38 | 只看該作者
22#
發(fā)表于 2025-3-25 08:43:19 | 只看該作者
23#
發(fā)表于 2025-3-25 12:43:34 | 只看該作者
24#
發(fā)表于 2025-3-25 18:54:41 | 只看該作者
25#
發(fā)表于 2025-3-25 23:00:27 | 只看該作者
Dynamics of semigroups, with applications to differential equationst parts, hypercyclic and chaotic semigroups have important applications to partial differential equations and to infinite linear systems of ordinary differential equations. Representative examples are discussed.
26#
發(fā)表于 2025-3-26 01:15:46 | 只看該作者
27#
發(fā)表于 2025-3-26 05:14:23 | 只看該作者
28#
發(fā)表于 2025-3-26 12:25:55 | 只看該作者
Hypercyclic subspacess are hypercyclic. Such a subspace is called a hypercyclic subspace. We give two proofs of Montes’ theorem that provides a sufficient condition for the existence of hypercyclic subspaces. The first proof provides an explicit construction via basic sequences, the second one relies on the study of lef
29#
發(fā)表于 2025-3-26 13:25:51 | 只看該作者
Common hypercyclic vectorsame space automatically possess common hypercyclic vectors, this is no longer the case for uncountable families. The Common Hypercyclicity Criterion provides a sufficient condition for a (one-parameter) family of operators to admit a common hypercyclic vector. We study, in particular, common hypercy
30#
發(fā)表于 2025-3-26 19:26:07 | 只看該作者
Linear dynamics in topological vector spaces introduction to such spaces we revisit many of the results previously obtained in the book and show that they hold in great generality. We also derive dynamical transference principles which allow us to transfer the dynamical properties of operators on F-spaces to operators on general topological v
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大新县| 镇平县| 库车县| 成安县| 丰台区| 绥宁县| 通州区| 逊克县| 正蓝旗| 武胜县| 家居| 来凤县| 南木林县| 德州市| 黔西| 固阳县| 丽水市| 阆中市| 湟源县| 漳浦县| 宁乡县| 尼木县| 都昌县| 应城市| 贵港市| 沙湾县| 军事| 香港 | 德格县| 望奎县| 江都市| 松阳县| 高安市| 巨野县| 赣榆县| 鹰潭市| 顺义区| 铁岭市| 富裕县| 安龙县| 云和县|