找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Chaos; Karl-G. Grosse-Erdmann,Alfred Peris Manguillot Textbook 2011 Springer-Verlag London Limited 2011 Chaos.Dynamical systems.Hyp

[復(fù)制鏈接]
樓主: chondrocyte
21#
發(fā)表于 2025-3-25 06:57:38 | 只看該作者
22#
發(fā)表于 2025-3-25 08:43:19 | 只看該作者
23#
發(fā)表于 2025-3-25 12:43:34 | 只看該作者
24#
發(fā)表于 2025-3-25 18:54:41 | 只看該作者
25#
發(fā)表于 2025-3-25 23:00:27 | 只看該作者
Dynamics of semigroups, with applications to differential equationst parts, hypercyclic and chaotic semigroups have important applications to partial differential equations and to infinite linear systems of ordinary differential equations. Representative examples are discussed.
26#
發(fā)表于 2025-3-26 01:15:46 | 只看該作者
27#
發(fā)表于 2025-3-26 05:14:23 | 只看該作者
28#
發(fā)表于 2025-3-26 12:25:55 | 只看該作者
Hypercyclic subspacess are hypercyclic. Such a subspace is called a hypercyclic subspace. We give two proofs of Montes’ theorem that provides a sufficient condition for the existence of hypercyclic subspaces. The first proof provides an explicit construction via basic sequences, the second one relies on the study of lef
29#
發(fā)表于 2025-3-26 13:25:51 | 只看該作者
Common hypercyclic vectorsame space automatically possess common hypercyclic vectors, this is no longer the case for uncountable families. The Common Hypercyclicity Criterion provides a sufficient condition for a (one-parameter) family of operators to admit a common hypercyclic vector. We study, in particular, common hypercy
30#
發(fā)表于 2025-3-26 19:26:07 | 只看該作者
Linear dynamics in topological vector spaces introduction to such spaces we revisit many of the results previously obtained in the book and show that they hold in great generality. We also derive dynamical transference principles which allow us to transfer the dynamical properties of operators on F-spaces to operators on general topological v
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铜山县| 民权县| 深泽县| 海南省| 湘阴县| 阳山县| 灵台县| SHOW| 平罗县| 金平| 岢岚县| 稷山县| 南陵县| 阜新市| 阜城县| 喀什市| 县级市| 辽阳县| 和政县| 内乡县| 绥中县| 宜君县| 泰安市| 嘉义县| 洪湖市| 隆尧县| 建水县| 石柱| 琼海市| 普兰县| 吴桥县| 滕州市| 桑日县| 抚顺县| 柳江县| 诸城市| 平顶山市| 唐山市| 进贤县| 新晃| 司法|