找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Algebra with Python; Theory and Applicati Makoto Tsukada,Yuji Kobayashi,Masato Noguchi Textbook 2023 The Editor(s) (if applicable) a

[復(fù)制鏈接]
樓主: 挑染
11#
發(fā)表于 2025-3-23 10:45:34 | 只看該作者
Inner Product and Fourier Expansion,In this chapter, we consider a scalar-valued binary operation on a linear space called an inner product. It leads to the concepts of the length of a vector and the orthogonality between vectors, which give to a linear space the structure of Euclidean geometry. Also, we learn the meaning of orthogonality between functions in a function space.
12#
發(fā)表于 2025-3-23 17:46:11 | 只看該作者
13#
發(fā)表于 2025-3-23 21:06:56 | 只看該作者
14#
發(fā)表于 2025-3-24 02:00:35 | 只看該作者
Jordan Normal Form and Spectrum, arbitrary matrices not necessarily diagonalizable. We explain how to compute them in Python for large matrices which may be hard and cumbersome using only paper and pencil. We also make a program which generates classroom or examination problems.
15#
發(fā)表于 2025-3-24 04:59:26 | 只看該作者
16#
發(fā)表于 2025-3-24 08:32:16 | 只看該作者
17#
發(fā)表于 2025-3-24 14:35:34 | 只看該作者
18#
發(fā)表于 2025-3-24 17:58:07 | 只看該作者
Makoto Tsukada,Yuji Kobayashi,Hiroshi Kaneko,Sin-Ei Takahasi,Kiyoshi Shirayanagi,Masato Noguchio interview forms does not really differ fundamentally. In fact, quite the opposite applies: central themes in both methodological traditions include the problems of gaining access to the elite or to experts (particularly at a high level) as well as the specifics of interaction and the actual interv
19#
發(fā)表于 2025-3-24 20:01:53 | 只看該作者
20#
發(fā)表于 2025-3-25 01:20:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
溧水县| 隆子县| 开江县| 乌拉特前旗| 桦南县| 通海县| 托里县| 吉首市| 桃江县| 根河市| 孟连| 河源市| 成武县| 灵石县| 永川市| 榆社县| 普宁市| 淮安市| 托克逊县| 眉山市| 克东县| 德格县| 内丘县| 邵阳市| 峡江县| 建水县| 文水县| 南丰县| 兴义市| 嘉兴市| 柳江县| 从江县| 武清区| 邓州市| 清远市| 拜城县| 察雅县| 贵南县| 新乐市| 霍林郭勒市| 射洪县|