找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Algebra and Group Theory for Physicists and Engineers; Yair Shapira Textbook 2023Latest edition The Editor(s) (if applicable) and T

[復制鏈接]
樓主: Clinton
11#
發(fā)表于 2025-3-23 11:56:12 | 只看該作者
Spline: Variational Model in 3-DBy now, our finite-element mesh is quite regular and accurate. It is now time to define basis functions (B-splines) on it. What is a basis function? It has the following properties:
12#
發(fā)表于 2025-3-23 17:00:47 | 只看該作者
Permutation Group and the DeterminantLet us design a new group: the group of permutations. It will help define the determinant in a new way. This will give us a few attractive properties. Later on, in quantum chemistry, this will help analyze the electronic structure in the atom.
13#
發(fā)表于 2025-3-23 20:23:51 | 只看該作者
https://doi.org/10.1007/978-3-031-22422-5Group theory; Linear algebra; High dimensional vectors; Fourier matrices; Markov chain; Quantum mechanics
14#
發(fā)表于 2025-3-23 23:56:24 | 只看該作者
Numerical Integrationur numerical results are encouraging: as the mesh refines, the numerical integral gets more and more accurate. This indicates that our original algorithm is indeed robust and could be used in even more complicated domains.
15#
發(fā)表于 2025-3-24 05:36:13 | 只看該作者
16#
發(fā)表于 2025-3-24 09:46:11 | 只看該作者
17#
發(fā)表于 2025-3-24 11:50:16 | 只看該作者
18#
發(fā)表于 2025-3-24 16:34:48 | 只看該作者
Markov Matrix and Its Spectrum: Toward Search Enginesheory, they may help design a weighted graph and model a stochastic flow in it. This makes a Markov chain, converging to a unique steady state. This has a practical application in modern search engines in the Internet.
19#
發(fā)表于 2025-3-24 21:20:38 | 只看該作者
Mesh Regularityomised. After all, to approximate the curved boundary well, the tetrahedra must be a little thin. Still, thanks to our tricks, regularity decreases only moderately and linearly from level to level. This is not too bad: it is unavoidable and indeed worthwhile to compromise some regularity for the sake of high accuracy.
20#
發(fā)表于 2025-3-24 23:53:31 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 21:38
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
蕉岭县| 罗甸县| 河曲县| 洪雅县| 延庆县| 林芝县| 耒阳市| 绥滨县| 澳门| 鄂托克前旗| 沈丘县| 舟山市| 金昌市| 泌阳县| 辉县市| 光山县| 福贡县| 吉木萨尔县| 德兴市| 峡江县| 资溪县| 遂昌县| 方正县| 周宁县| 延吉市| 郓城县| 信丰县| 敖汉旗| 深水埗区| 甘德县| 绥江县| 谢通门县| 沧源| 甘肃省| 巴中市| 荥阳市| 木里| 顺昌县| 高邑县| 德格县| 洞口县|