找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Algebra and Geometry; Igor R. Shafarevich,Alexey O. Remizov Textbook 2013 Springer-Verlag Berlin Heidelberg 2013 groups, rings, mod

[復(fù)制鏈接]
樓主: Eschew
31#
發(fā)表于 2025-3-27 00:01:51 | 只看該作者
32#
發(fā)表于 2025-3-27 04:53:18 | 只看該作者
33#
發(fā)表于 2025-3-27 09:16:41 | 只看該作者
od introduction to the subject.Numerous examples and applica.This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory
34#
發(fā)表于 2025-3-27 11:39:25 | 只看該作者
Matrices and Determinants,symmetric multilinear function of the rows. Using some basic elements of permutation theory, we continue to study the properties of determinants; in particular, we derive explicit formula for determinants. Finally, we define the rank of a matrix and the main operations on matrices (sum, product, inverse matrix) and investigate their properties.
35#
發(fā)表于 2025-3-27 14:51:32 | 只看該作者
Linear Transformations of a Vector Space to Itself,lizable. Analogously, for a real vector space, we obtain necessary and sufficient conditions for a linear transformation to be block-diagonalizable. Finally, the notion of orientation of a real vector space is considered.
36#
發(fā)表于 2025-3-27 21:08:31 | 只看該作者
Quadratic and Bilinear Forms, are established. Complex, real, and Hermitian forms are investigated in greater detail. For illustration of the obtained results, we consider an application of Sylvester’s criterion to algebraic equations (necessary and sufficient conditions for a real polynomial to have only real roots).
37#
發(fā)表于 2025-3-27 23:27:01 | 只看該作者
38#
發(fā)表于 2025-3-28 05:03:04 | 只看該作者
Hyperbolic Geometry,rief historical overview is given. At the end of the chapter, some geometric notions (distance, angle, etc.) are introduced, and basic facts of hyperbolic geometry are established. A brief discussion of elliptic geometry is also presented.
39#
發(fā)表于 2025-3-28 06:34:50 | 只看該作者
40#
發(fā)表于 2025-3-28 12:43:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东兴市| 夹江县| 毕节市| 丰顺县| 仙居县| 碌曲县| 绍兴县| 南涧| 姜堰市| 新竹市| 贵南县| 电白县| 镇赉县| 白银市| 余庆县| 聊城市| 元谋县| 佛山市| 平原县| 东乡| 昭通市| 揭阳市| 华容县| 米易县| 乌兰察布市| 忻城县| 海南省| 北宁市| 芷江| 尚志市| 焦作市| 亚东县| 徐汇区| 封丘县| 元阳县| 台中市| 南涧| 陇川县| 沙田区| 万荣县| 长丰县|