找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Algebra Through Geometry; Thomas Banchoff,John Wermer Textbook 1992Latest edition Springer-Verlag New York, Inc. 1992 Eigenvalue.Li

[復(fù)制鏈接]
樓主: 年邁
21#
發(fā)表于 2025-3-25 06:15:48 | 只看該作者
The Geometry of Vectors in the Plane,ms which are usually expressed in the language of analytic or coordinate geometry, because vector notation enables us to use a single symbol to refer to a pair of numbers which gives the coordinates of a point. Not only does this give us convenient notations for expressing important results, but it
22#
發(fā)表于 2025-3-25 08:12:13 | 只看該作者
Transformations of 3-Space,e vector .(.) is called the . of . under ., and the collection of all vectors which are images of vectors under the transformation . is called the . of .. We denote transformations by capital letters, such as ., etc.
23#
發(fā)表于 2025-3-25 14:55:48 | 只看該作者
Eigenvalues,d if . is a vector perpendicular to π, then .(.) = ?.. Thus for . = 1 and . = ?1, there exist nonzero vectors . satisfying .(.) = .. If . is any vector which is neither on π nor perpendicular to π, then .(.) is not a multiple of ..
24#
發(fā)表于 2025-3-25 15:56:56 | 只看該作者
25#
發(fā)表于 2025-3-25 21:12:42 | 只看該作者
Classification of Quadric Surfaces,ond degree; for example,.The general form of the equation of a quadric surface is. where the coefficients ., and . are constants. We would like to predict the shape of the quadric surface in terms of the coefficients, much in the same way that we described a conic section in terms of the coefficient
26#
發(fā)表于 2025-3-26 03:30:30 | 只看該作者
,Vector Geometry in ,-Space, , ≥ 4,dimensions. What begins as an alternative way of treating problems in analytic geometry becomes a powerful tool for investigating increasingly complicated phenomena, such as eigenvectors or quadratic forms, which would be difficult to approach otherwise.
27#
發(fā)表于 2025-3-26 05:07:50 | 只看該作者
Textbook 1992Latest edition This approach makes it possible to start with vectors, linear transformations, and matrices in the context of familiar plane geometry and to move directly to topics such as dot products, determinants, eigenvalues, and quadratic forms. The later chapters deal with n-dimensional Euclidean space and o
28#
發(fā)表于 2025-3-26 10:09:29 | 只看該作者
29#
發(fā)表于 2025-3-26 13:28:08 | 只看該作者
0172-6056 geometry. This approach makes it possible to start with vectors, linear transformations, and matrices in the context of familiar plane geometry and to move directly to topics such as dot products, determinants, eigenvalues, and quadratic forms. The later chapters deal with n-dimensional Euclidean s
30#
發(fā)表于 2025-3-26 19:18:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌苏市| 五原县| 年辖:市辖区| 浏阳市| 吕梁市| 临汾市| 布尔津县| 马尔康县| 三门县| 疏勒县| 荆州市| 永仁县| 林口县| 栾川县| 洪雅县| 沙田区| 五台县| 兰西县| 永登县| 静宁县| 常山县| 固阳县| 绩溪县| 高淳县| 奈曼旗| 若尔盖县| 普兰店市| 阳城县| 石家庄市| 塔城市| 南部县| 甘南县| 镇宁| 修文县| 阿拉善右旗| 和政县| 枣阳市| 石河子市| 巴里| 大竹县| 天峻县|